(a) Schrodinger’s equation says that the dynamical evolution of Ψ is given by
i ∂ Ψ ∂ t = − ℏ 2 2 m ∂ 2 Ψ ∂ x 2 + V ( x ) Ψ i ~\dfrac{∂Ψ}{∂t} = −~\dfrac{\hbar^2}{2 m}\dfrac{∂^2Ψ}{∂x^2}+ V (x) Ψ i ∂ t ∂ Ψ = − 2 m ℏ 2 ∂ x 2 ∂ 2 Ψ + V ( x ) Ψ
for a potential V(x)
Our statistical interpretation is provided by viewing Ψ ( x , t ) ∗ Ψ ( x , t ) Ψ(x, t) ∗ Ψ(x, t) Ψ ( x , t ) ∗ Ψ ( x , t ) as a density: ρ ( x , t ) ρ(x, t) ρ ( x , t ) = ∣ Ψ ( x , t ) ∣ 2 = |Ψ(x, t)|^ 2 = ∣Ψ ( x , t ) ∣ 2 so that
P ( a , b ) = ∫ a b ρ ( x , t ) d x = ∫ a b ∣ Ψ ( x , t ) ∣ 2 d x P(a, b) = \int ^b_aρ(x, t) dx =\int ^b_a|Ψ(x, t)|^2dx P ( a , b ) = ∫ a b ρ ( x , t ) d x = ∫ a b ∣Ψ ( x , t ) ∣ 2 d x
d d t ∫ − ∞ ∞ ∣ Ψ ( x , t ) ∣ 2 d x = ∫ − ∞ ∞ ∂ ∂ t ( Ψ ∗ ( x , t ) Ψ ( x , t ) ) d x \dfrac{d}{dt} \int^ ∞_{−∞}|Ψ(x, t)|^2dx =\int^ ∞_{−∞}\dfrac{∂}{∂t} (Ψ^∗(x, t) Ψ(x, t)) dx d t d ∫ − ∞ ∞ ∣Ψ ( x , t ) ∣ 2 d x = ∫ − ∞ ∞ ∂ t ∂ ( Ψ ∗ ( x , t ) Ψ ( x , t )) d x
then we just need the temporal derivative of the norm (squared) of Ψ(x, t):
∂ ∂ t ( Ψ ∗ ( x , t ) Ψ ( x , t ) ) = ∂ Ψ ∗ ∂ t Ψ + Ψ ∗ ∂ Ψ ∂ t \dfrac{∂}{∂t} (Ψ^∗(x, t) Ψ(x, t)) = \dfrac{∂Ψ^∗}{∂t} Ψ + Ψ^∗ \dfrac{∂Ψ}{∂t} ∂ t ∂ ( Ψ ∗ ( x , t ) Ψ ( x , t )) = ∂ t ∂ Ψ ∗ Ψ + Ψ ∗ ∂ t ∂ Ψ
Schrodinger’s equation, and its complex conjugate provide precisely the desired connection:
∂ Ψ ∂ t = i ℏ 2 m ∂ 2 Ψ ∂ x 2 − i ℏ V ( x ) Ψ \dfrac{∂Ψ}{∂t} =\dfrac{i\hbar}{ 2 m}\dfrac{∂^2Ψ}{∂x^2}−\dfrac{i}{\hbar}~V (x) Ψ ∂ t ∂ Ψ = 2 m i ℏ ∂ x 2 ∂ 2 Ψ − ℏ i V ( x ) Ψ
∂ Ψ ∗ ∂ t = − i ℏ 2 m ∂ 2 Ψ ∗ ∂ x 2 + i ℏ V ( x ) Ψ ∗ \dfrac{∂Ψ^∗}{∂t} = −\dfrac{i\hbar}{ ~2 m}\dfrac{∂^2Ψ^∗}{∂x^2}+\dfrac{i}{\hbar}~V (x) Ψ^∗ ∂ t ∂ Ψ ∗ = − 2 m i ℏ ∂ x 2 ∂ 2 Ψ ∗ + ℏ i V ( x ) Ψ ∗
and we can write the above as:
∂ ∂ t ( Ψ ∗ ( x , t ) Ψ ( x , t ) ) = i ℏ 2 m ( − ∂ 2 Ψ ∗ ∂ x 2 Ψ + Ψ ∗ ∂ 2 Ψ ∂ x 2 ) . \dfrac{\partial}{∂t} (Ψ^∗(x, t) Ψ(x, t)) = \dfrac{i\hbar}{ ~2 m}\bigg(−\dfrac{∂^2Ψ^∗}{∂x^2}Ψ + Ψ^∗\dfrac{ ∂^2Ψ}{∂x^2}\bigg). ∂ t ∂ ( Ψ ∗ ( x , t ) Ψ ( x , t )) = 2 m i ℏ ( − ∂ x 2 ∂ 2 Ψ ∗ Ψ + Ψ ∗ ∂ x 2 ∂ 2 Ψ ) .
Now, under the integral, we can use integration by parts1 to simplify the above – consider the first term :
∫ − ∞ ∞ ∂ 2 Ψ ∗ ∂ x 2 Ψ d x = ∣ ( ∂ Ψ ∗ ∂ x Ψ ) ∣ − ∞ ∞ − ∫ − ∞ ∞ ∂ Ψ ∗ ∂ x ∂ Ψ ∂ x d x \int^∞_{−∞}\dfrac{∂^2Ψ^∗}{∂x^2}Ψ dx =\bigg|\bigg(\dfrac{∂Ψ^∗}{∂x} Ψ\bigg)\bigg|^∞_{−∞}−\int^ ∞_{−∞}\dfrac{∂Ψ^∗}{∂x}\dfrac{∂Ψ}{∂x} dx ∫ − ∞ ∞ ∂ x 2 ∂ 2 Ψ ∗ Ψ d x = ∣ ∣ ( ∂ x ∂ Ψ ∗ Ψ ) ∣ ∣ − ∞ ∞ − ∫ − ∞ ∞ ∂ x ∂ Ψ ∗ ∂ x ∂ Ψ d x
We can get rid of the boundary term by assuming (an additional requirement) that Ψ ( x , t ) ⟶ 0 Ψ(x, t) \longrightarrow 0 Ψ ( x , t ) ⟶ 0 as ∣ x ∣ ⟶ ∞ |x| \longrightarrow∞ ∣ x ∣ ⟶ ∞
d d t ∫ − ∞ ∞ ( Ψ ∗ ( x , t ) Ψ ( x , t ) ) = i ℏ 2 m ∫ − ∞ ∞ [ ( − ∂ 2 Ψ ∗ ∂ x 2 Ψ + Ψ ∗ ∂ 2 Ψ ∂ x 2 ) ] . \dfrac{d}{dt}\int_{-\infin}^{\infin} (Ψ^∗(x, t) Ψ(x, t)) = \dfrac{i\hbar}{ ~2 m}\int^\infin_{-\infin}\bigg[\bigg(−\dfrac{∂^2Ψ^∗}{∂x^2}Ψ + Ψ^∗\dfrac{ ∂^2Ψ}{∂x^2}\bigg)\bigg]. d t d ∫ − ∞ ∞ ( Ψ ∗ ( x , t ) Ψ ( x , t )) = 2 m i ℏ ∫ − ∞ ∞ [ ( − ∂ x 2 ∂ 2 Ψ ∗ Ψ + Ψ ∗ ∂ x 2 ∂ 2 Ψ ) ] .
d d t ∫ − ∞ ∞ ∣ Ψ ( x , t ) ∣ 2 d x = i ℏ 2 m ∫ − ∞ ∞ [ ∂ Ψ ∗ ∂ x ∂ Ψ ∂ x − ∂ Ψ ∗ ∂ x ∂ Ψ ∂ x ] d x \dfrac{d}{dt} \int^ ∞_{−∞}|Ψ(x, t)|^2dx=\dfrac{i\hbar}{ ~2 m}\int^ ∞_{−∞}\bigg[\dfrac{∂Ψ^∗}{∂x}\dfrac{∂Ψ}{∂x}-\dfrac{∂Ψ^*}{∂x}\dfrac{∂Ψ}{∂x}\bigg] dx d t d ∫ − ∞ ∞ ∣Ψ ( x , t ) ∣ 2 d x = 2 m i ℏ ∫ − ∞ ∞ [ ∂ x ∂ Ψ ∗ ∂ x ∂ Ψ − ∂ x ∂ Ψ ∗ ∂ x ∂ Ψ ] d x
d d t ∫ − ∞ ∞ ∣ Ψ ( x , t ) ∣ 2 d x = 0 \dfrac{d}{dt} \int^ ∞_{−∞}|Ψ(x, t)|^2dx=0 d t d ∫ − ∞ ∞ ∣Ψ ( x , t ) ∣ 2 d x = 0
(b) Expectation value of momentum p is given by
< p > = ∫ − ∞ ∞ Ψ ∗ p ^ Ψ d x <p>=\int_{-\infin}^{\infin}\Psi^*\hat p\Psi dx < p >= ∫ − ∞ ∞ Ψ ∗ p ^ Ψ d x
p ^ \hat p p ^ is given by
p ^ = − i ℏ ∂ Ψ ∂ x \hat p=-i\hbar\dfrac{\partial\Psi}{\partial x} p ^ = − i ℏ ∂ x ∂ Ψ
Substituting p ^ \hat p p ^ in above equation
< p > = ∫ − ∞ ∞ Ψ ∗ ( − i ℏ ∂ Ψ ∂ x ) d x <p>=\int_{-\infin}^{\infin}\Psi^*\bigg(-i\hbar\dfrac{\partial\Psi}{\partial x}\bigg)dx < p >= ∫ − ∞ ∞ Ψ ∗ ( − i ℏ ∂ x ∂ Ψ ) d x
< p > = − i ℏ ∫ Ψ ∗ ( ∂ Ψ ∂ x ) d x <p>=-i\hbar\int\Psi^*\bigg(\dfrac{\partial\Psi}{\partial x}\bigg)dx < p >= − i ℏ ∫ Ψ ∗ ( ∂ x ∂ Ψ ) d x
Differentiating above equation with respect to time
d d t < p > = ( − i ℏ ) d d t ∫ Ψ ∗ ( ∂ Ψ ∂ x ) d x \dfrac{d}{dt}<p>=(-i\hbar)\dfrac{d}{dt}\int\Psi^*\bigg(\dfrac{\partial\Psi}{\partial x}\bigg)dx d t d < p >= ( − i ℏ ) d t d ∫ Ψ ∗ ( ∂ x ∂ Ψ ) d x
= ( − i ℏ ) ∫ ∂ ∂ t ( Ψ ∗ ∂ Ψ ∂ x ) d x =(-i\hbar)\int\dfrac{\partial}{\partial t}\bigg(\Psi^*\dfrac{\partial\Psi}{\partial x}\bigg)dx = ( − i ℏ ) ∫ ∂ t ∂ ( Ψ ∗ ∂ x ∂ Ψ ) d x
d d t < p > = ( − i ℏ ) ∫ [ ∂ Ψ ∗ ∂ t ∂ Ψ ∂ x + Ψ ∗ ∂ ∂ x ∂ Ψ ∂ t ] d x ( 1 ) \dfrac{d}{dt}<p>=(-i\hbar)\int\bigg[\dfrac{\partial\Psi^*}{\partial t}\dfrac{\partial\Psi}{\partial x}+\Psi^*\dfrac{\partial}{\partial x}\dfrac{\partial\Psi}{\partial t}\bigg]dx\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space(1) d t d < p >= ( − i ℏ ) ∫ [ ∂ t ∂ Ψ ∗ ∂ x ∂ Ψ + Ψ ∗ ∂ x ∂ ∂ t ∂ Ψ ] d x ( 1 )
Time dependent Schrodinger's equation is given as
− ℏ 2 2 m ∂ 2 Ψ ∂ x 2 + V Ψ = i ℏ ∂ Ψ ∂ t \dfrac{-\hbar^2}{2m}\dfrac{\partial^2\Psi}{\partial x^2}+V\Psi=i\hbar\dfrac{\partial\Psi}{\partial t} 2 m − ℏ 2 ∂ x 2 ∂ 2 Ψ + V Ψ = i ℏ ∂ t ∂ Ψ
∂ Ψ ∂ t = 1 i ℏ [ − ℏ 2 2 m ∂ 2 Ψ ∂ x 2 + V Ψ ] \dfrac{\partial\Psi}{\partial t}=\dfrac{1}{i\hbar}\bigg[\dfrac{-\hbar^2}{2m}\dfrac{\partial^2\Psi}{\partial x^2}+V\Psi\bigg] ∂ t ∂ Ψ = i ℏ 1 [ 2 m − ℏ 2 ∂ x 2 ∂ 2 Ψ + V Ψ ]
= − i ℏ [ − ℏ 2 2 m ∂ 2 Ψ ∂ x 2 + V Ψ ] =\dfrac{-i}{\hbar}\bigg[\dfrac{-\hbar^2}{2m}\dfrac{\partial^2\Psi}{\partial x^2}+V\Psi\bigg] = ℏ − i [ 2 m − ℏ 2 ∂ x 2 ∂ 2 Ψ + V Ψ ]
∂ Ψ ∂ t = i ℏ 2 m ∂ 2 Ψ ∂ x 2 − i ℏ V Ψ ( 2 ) \dfrac{\partial\Psi}{\partial t}=\dfrac{i\hbar}{2m}\dfrac{\partial^2\Psi}{\partial x^2}-\dfrac{i}{\hbar}V\Psi\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space(2) ∂ t ∂ Ψ = 2 m i ℏ ∂ x 2 ∂ 2 Ψ − ℏ i V Ψ ( 2 )
Similarly,
∂ Ψ ∗ ∂ t = − i ℏ 2 m ∂ 2 Ψ ∗ ∂ x 2 + i ℏ V Ψ ∗ ( 3 ) \dfrac{\partial\Psi^*}{\partial t}=\dfrac{-i\hbar}{2m}\dfrac{\partial^2\Psi^*}{\partial x^2}+\dfrac{i}{\hbar}V\Psi^*\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space(3) ∂ t ∂ Ψ ∗ = 2 m − i ℏ ∂ x 2 ∂ 2 Ψ ∗ + ℏ i V Ψ ∗ ( 3 )
Substituting the value of equation (2) and (3) in equation (1)
d d t < p > = i ℏ ∫ [ ( − i ℏ 2 m ∂ 2 Ψ ∗ ∂ x 2 + i ℏ V Ψ ∗ ) ∂ Ψ ∂ x + Ψ ∗ ∂ ∂ x ( i ℏ 2 m ∂ 2 Ψ ∂ x 2 − i ℏ V Ψ ) ] d x \dfrac{d}{dt}<p>=i\hbar\int\bigg[\bigg(\dfrac{-i\hbar}{2m}\dfrac{\partial^2\Psi^*}{\partial x^2}+\dfrac{i}{\hbar}V\Psi^*\bigg)\dfrac{\partial\Psi}{\partial x}+\Psi^*\dfrac{\partial}{\partial x}\bigg(\dfrac{i\hbar}{2m}\dfrac{\partial^2\Psi}{\partial x^2}-\dfrac{i}{\hbar}V\Psi\bigg)\bigg]dx d t d < p >= i ℏ ∫ [ ( 2 m − i ℏ ∂ x 2 ∂ 2 Ψ ∗ + ℏ i V Ψ ∗ ) ∂ x ∂ Ψ + Ψ ∗ ∂ x ∂ ( 2 m i ℏ ∂ x 2 ∂ 2 Ψ − ℏ i V Ψ ) ] d x
d d t < p > = − ℏ 2 2 m ∫ [ ∂ 2 Ψ ∗ ∂ x 2 ∂ Ψ ∂ x − Ψ ∗ ∂ ∂ x ( ∂ 2 Ψ ∂ x 2 ) ] d x + < − ∂ V ∂ x > \dfrac{d}{dt}<p>=\dfrac{-\hbar^2}{2m}\int\bigg[\dfrac{\partial^2\Psi^*}{\partial x^2}\dfrac{\partial\Psi}{\partial x}-\Psi^*\dfrac{\partial}{\partial x}\bigg(\dfrac{\partial^2\Psi}{\partial x^2}\bigg)\bigg]dx+\bigg<\dfrac{-\partial V}{\partial x}\bigg> d t d < p >= 2 m − ℏ 2 ∫ [ ∂ x 2 ∂ 2 Ψ ∗ ∂ x ∂ Ψ − Ψ ∗ ∂ x ∂ ( ∂ x 2 ∂ 2 Ψ ) ] d x + ⟨ ∂ x − ∂ V ⟩
Solving the middle term of the equation goes to zero as
Ψ ⟶ 0 \Psi\longrightarrow0 Ψ ⟶ 0 as x ⟶ ± ∞ x\longrightarrow\pm\infin x ⟶ ± ∞
d d t < p > = < − ∂ V ∂ x > \dfrac{d}{dt}<p>=\bigg<\dfrac{-\partial V}{\partial x}\bigg> d t d < p >= ⟨ ∂ x − ∂ V ⟩
Comments