Question #197937

a) Suppose, I have normalized the wave function at some point of time. The wave function evolves with time according to time dependent Schrodinger equation. How do I know that the wave function remains normalized after some time? [Hint: Show that d dt int - infty ^ infty | psi(x,t)|^ 2 dx=0] (b) Show that d(p)/dt =(- partial V/partial x ) i.e.,expectation values follow Newton's law.


1
Expert's answer
2021-05-24T15:51:22-0400

(a)  Schrodinger’s equation says that the dynamical evolution of Ψ is given by

i Ψt= 22m2Ψx2+V(x)Ψi ~\dfrac{∂Ψ}{∂t} = −~\dfrac{\hbar^2}{2 m}\dfrac{∂^2Ψ}{∂x^2}+ V (x) Ψ

for a potential V(x)


Our statistical interpretation is provided by viewing Ψ(x,t)Ψ(x,t)Ψ(x, t) ∗ Ψ(x, t) as a density: ρ(x,t)ρ(x, t) =Ψ(x,t)2= |Ψ(x, t)|^ 2 so that

P(a,b)=abρ(x,t)dx=abΨ(x,t)2dxP(a, b) = \int ^b_aρ(x, t) dx =\int ^b_a|Ψ(x, t)|^2dx


ddtΨ(x,t)2dx=t(Ψ(x,t)Ψ(x,t))dx\dfrac{d}{dt} \int^ ∞_{−∞}|Ψ(x, t)|^2dx =\int^ ∞_{−∞}\dfrac{∂}{∂t} (Ψ^∗(x, t) Ψ(x, t)) dx


then we just need the temporal derivative of the norm (squared) of Ψ(x, t):

t(Ψ(x,t)Ψ(x,t))=ΨtΨ+ΨΨt\dfrac{∂}{∂t} (Ψ^∗(x, t) Ψ(x, t)) = \dfrac{∂Ψ^∗}{∂t} Ψ + Ψ^∗ \dfrac{∂Ψ}{∂t}


Schrodinger’s equation, and its complex conjugate provide precisely the desired connection:

Ψt=i2m2Ψx2i V(x)Ψ\dfrac{∂Ψ}{∂t} =\dfrac{i\hbar}{ 2 m}\dfrac{∂^2Ψ}{∂x^2}−\dfrac{i}{\hbar}~V (x) Ψ


Ψt=i 2m2Ψx2+i V(x)Ψ\dfrac{∂Ψ^∗}{∂t} = −\dfrac{i\hbar}{ ~2 m}\dfrac{∂^2Ψ^∗}{∂x^2}+\dfrac{i}{\hbar}~V (x) Ψ^∗


and we can write the above as:

t(Ψ(x,t)Ψ(x,t))=i 2m(2Ψx2Ψ+Ψ2Ψx2).\dfrac{\partial}{∂t} (Ψ^∗(x, t) Ψ(x, t)) = \dfrac{i\hbar}{ ~2 m}\bigg(−\dfrac{∂^2Ψ^∗}{∂x^2}Ψ + Ψ^∗\dfrac{ ∂^2Ψ}{∂x^2}\bigg).


Now, under the integral, we can use integration by parts1 to simplify the above – consider the first term :

2Ψx2Ψdx=(ΨxΨ)ΨxΨxdx\int^∞_{−∞}\dfrac{∂^2Ψ^∗}{∂x^2}Ψ dx =\bigg|\bigg(\dfrac{∂Ψ^∗}{∂x} Ψ\bigg)\bigg|^∞_{−∞}−\int^ ∞_{−∞}\dfrac{∂Ψ^∗}{∂x}\dfrac{∂Ψ}{∂x} dx


We can get rid of the boundary term by assuming (an additional requirement) that Ψ(x,t)0Ψ(x, t) \longrightarrow 0 as x|x| \longrightarrow∞

ddt(Ψ(x,t)Ψ(x,t))=i 2m[(2Ψx2Ψ+Ψ2Ψx2)].\dfrac{d}{dt}\int_{-\infin}^{\infin} (Ψ^∗(x, t) Ψ(x, t)) = \dfrac{i\hbar}{ ~2 m}\int^\infin_{-\infin}\bigg[\bigg(−\dfrac{∂^2Ψ^∗}{∂x^2}Ψ + Ψ^∗\dfrac{ ∂^2Ψ}{∂x^2}\bigg)\bigg].

ddtΨ(x,t)2dx=i 2m[ΨxΨxΨxΨx]dx\dfrac{d}{dt} \int^ ∞_{−∞}|Ψ(x, t)|^2dx=\dfrac{i\hbar}{ ~2 m}\int^ ∞_{−∞}\bigg[\dfrac{∂Ψ^∗}{∂x}\dfrac{∂Ψ}{∂x}-\dfrac{∂Ψ^*}{∂x}\dfrac{∂Ψ}{∂x}\bigg] dx

ddtΨ(x,t)2dx=0\dfrac{d}{dt} \int^ ∞_{−∞}|Ψ(x, t)|^2dx=0


(b) Expectation value of momentum p is given by

<p>=Ψp^Ψdx<p>=\int_{-\infin}^{\infin}\Psi^*\hat p\Psi dx

p^\hat p is given by

p^=iΨx\hat p=-i\hbar\dfrac{\partial\Psi}{\partial x}

Substituting p^\hat p in above equation

<p>=Ψ(iΨx)dx<p>=\int_{-\infin}^{\infin}\Psi^*\bigg(-i\hbar\dfrac{\partial\Psi}{\partial x}\bigg)dx

<p>=iΨ(Ψx)dx<p>=-i\hbar\int\Psi^*\bigg(\dfrac{\partial\Psi}{\partial x}\bigg)dx


Differentiating above equation with respect to time

ddt<p>=(i)ddtΨ(Ψx)dx\dfrac{d}{dt}<p>=(-i\hbar)\dfrac{d}{dt}\int\Psi^*\bigg(\dfrac{\partial\Psi}{\partial x}\bigg)dx

=(i)t(ΨΨx)dx=(-i\hbar)\int\dfrac{\partial}{\partial t}\bigg(\Psi^*\dfrac{\partial\Psi}{\partial x}\bigg)dx

ddt<p>=(i)[ΨtΨx+ΨxΨt]dx                              (1)\dfrac{d}{dt}<p>=(-i\hbar)\int\bigg[\dfrac{\partial\Psi^*}{\partial t}\dfrac{\partial\Psi}{\partial x}+\Psi^*\dfrac{\partial}{\partial x}\dfrac{\partial\Psi}{\partial t}\bigg]dx\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space(1)


Time dependent Schrodinger's equation is given as

22m2Ψx2+VΨ=iΨt\dfrac{-\hbar^2}{2m}\dfrac{\partial^2\Psi}{\partial x^2}+V\Psi=i\hbar\dfrac{\partial\Psi}{\partial t}

Ψt=1i[22m2Ψx2+VΨ]\dfrac{\partial\Psi}{\partial t}=\dfrac{1}{i\hbar}\bigg[\dfrac{-\hbar^2}{2m}\dfrac{\partial^2\Psi}{\partial x^2}+V\Psi\bigg]

=i[22m2Ψx2+VΨ]=\dfrac{-i}{\hbar}\bigg[\dfrac{-\hbar^2}{2m}\dfrac{\partial^2\Psi}{\partial x^2}+V\Psi\bigg]

Ψt=i2m2Ψx2iVΨ                                             (2)\dfrac{\partial\Psi}{\partial t}=\dfrac{i\hbar}{2m}\dfrac{\partial^2\Psi}{\partial x^2}-\dfrac{i}{\hbar}V\Psi\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space(2)

Similarly,

Ψt=i2m2Ψx2+iVΨ                                             (3)\dfrac{\partial\Psi^*}{\partial t}=\dfrac{-i\hbar}{2m}\dfrac{\partial^2\Psi^*}{\partial x^2}+\dfrac{i}{\hbar}V\Psi^*\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space(3)


Substituting the value of equation (2) and (3) in equation (1)

ddt<p>=i[(i2m2Ψx2+iVΨ)Ψx+Ψx(i2m2Ψx2iVΨ)]dx\dfrac{d}{dt}<p>=i\hbar\int\bigg[\bigg(\dfrac{-i\hbar}{2m}\dfrac{\partial^2\Psi^*}{\partial x^2}+\dfrac{i}{\hbar}V\Psi^*\bigg)\dfrac{\partial\Psi}{\partial x}+\Psi^*\dfrac{\partial}{\partial x}\bigg(\dfrac{i\hbar}{2m}\dfrac{\partial^2\Psi}{\partial x^2}-\dfrac{i}{\hbar}V\Psi\bigg)\bigg]dx

ddt<p>=22m[2Ψx2ΨxΨx(2Ψx2)]dx+<Vx>\dfrac{d}{dt}<p>=\dfrac{-\hbar^2}{2m}\int\bigg[\dfrac{\partial^2\Psi^*}{\partial x^2}\dfrac{\partial\Psi}{\partial x}-\Psi^*\dfrac{\partial}{\partial x}\bigg(\dfrac{\partial^2\Psi}{\partial x^2}\bigg)\bigg]dx+\bigg<\dfrac{-\partial V}{\partial x}\bigg>

Solving the middle term of the equation goes to zero as

Ψ0\Psi\longrightarrow0 as x±x\longrightarrow\pm\infin

ddt<p>=<Vx>\dfrac{d}{dt}<p>=\bigg<\dfrac{-\partial V}{\partial x}\bigg>


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS