The wave function Ψ(x, t) = A exp [i(k1x − ω1t)] + A exp [i(k2x − ω2t)] is a superposition of two free-
particle wave functions. Both k1 and k2 are positive.
(a) Show that this wave function satisfies the Schodinger equation for a free particle of mass m.
(b) Find and plot the probability distribution function for Ψ(x, 0).
(a)
If particles can exhibit wave nature, they should be described by a function that satisfies a ”wave equation”.
For classical waves
"\\dfrac{\\partial^2y(x,t)}{\\partial x^2}=\\dfrac{1}{v^2}\\dfrac{\\partial ^2y(x,t)}{\\partial t^2}"
"f(x,t)=A cos (kx \u2212 \u03c9t) + B sin (kx \u2212 \u03c9t)\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space\\space \u03c9 = vk"
For free-particle waves
"E =\\dfrac{p^2}{2m}\\space\\space \\space \\space \\space \\space \\space \\space \\space \\space \\space \\space \\space \\space \\space E = hf = \\hbar \u03c9 \\space \\space \\space \\space \\space \\space \\space \\space \\space \\space \\space \\space \\space p=\\dfrac h\u03bb= \\hbar k"
"\\hbar\\omega=\\dfrac{\\hbar^2k^2}{2m}"
The Schrodinger Equation for a free particle
"-\\dfrac{\\hbar}{2m}\\dfrac{\\partial^2\\Psi(x,t)}{\\partial x^2}=i\\hbar\\dfrac{\\partial\\Psi(x,t)}{\\partial t}"
The Wave Function
"\u03a8(x, t) = A cos (kx \u2212 \u03c9t) + iA sin (kx \u2212 \u03c9t) = Ae^{i(kx\u2212\u03c9t)}"
(b)
"\\Psi(x,t)=A[cos(k_1x-\\omega_1t)+sin(k_1x-\\omega_1 t)]+A[cos(k_2x-\\omega_2t)+sin(k_2x-\\omega_2 t)]"
"\\Psi(x,t)=2|A|^2(1+cos((k_1-k_2)x-(\\omega_1-\\omega_2)t))"
"\\Psi(x,0)=2|A|^2(1+cos((k_1-k_2)x))"
Comments
Leave a comment