Question #183713

{sigma x,sigma y}=0



1
Expert's answer
2021-04-22T07:27:06-0400

The Pauli matrices are

σx=(0110)\sigma_x = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}

σy=(0ii0)\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}

σz=(1001)\sigma_z =\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}

σxσy=iσz\sigma_x \sigma _y = i \sigma_z

σyσx=σxσy=iσz\sigma_y \sigma_x = - \sigma_x \sigma_y = -i \sigma_z

The anticommutator of σx\sigma_x and σy\sigma_y is

{σx,σy}=σxσy+σyσx=σxσyσxσy=0\{\sigma_x, \sigma_y\} = \sigma_x \sigma_y + \sigma_y \sigma_x = \sigma_x \sigma_y - \sigma_x \sigma_y =0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS