{sigma x,sigma y}=0
The Pauli matrices are
σx=(0110)\sigma_x = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}σx=(0110)
σy=(0−ii0)\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}σy=(0i−i0)
σz=(100−1)\sigma_z =\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}σz=(100−1)
σxσy=iσz\sigma_x \sigma _y = i \sigma_zσxσy=iσz
σyσx=−σxσy=−iσz\sigma_y \sigma_x = - \sigma_x \sigma_y = -i \sigma_zσyσx=−σxσy=−iσz
The anticommutator of σx\sigma_xσx and σy\sigma_yσy is
{σx,σy}=σxσy+σyσx=σxσy−σxσy=0\{\sigma_x, \sigma_y\} = \sigma_x \sigma_y + \sigma_y \sigma_x = \sigma_x \sigma_y - \sigma_x \sigma_y =0{σx,σy}=σxσy+σyσx=σxσy−σxσy=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments