Calculate the momentum of a proton whose kinetic energy is 200 MeV.
Given
E2−p2c2=m2c4E^2 - p^2 c^2 =m^2 c^4E2−p2c2=m2c4 where E is full energy, p is momentum and m - mass,
and
E=T+E0=T+mc2E = T+E_0 = T+mc^2E=T+E0=T+mc2
we obtain
(T+mc2)2−p2c2=m2c4(T+mc^2)^2 - p^2c^2 = m^2 c^4(T+mc2)2−p2c2=m2c4
T2+2Tmc2+m2c4−p2c2=m2c4T^2 +2Tmc^2 + m^2c^4 -p^2c^2 =m^2c^4T2+2Tmc2+m2c4−p2c2=m2c4
p2c2=T2+2Tmc2p^2c^2 = T^2 +2Tmc^2p2c2=T2+2Tmc2
pc=T2+2Tmc2pc = \sqrt{T^2+2Tmc^2}pc=T2+2Tmc2
Let's calculate all in units of GeV, T=200 MeV,mc2=938 MeVT=200\; MeV , mc^2 =938 \; MeVT=200MeV,mc2=938MeV.
pc=2002+2⋅200⋅938=415 200=644.36 MeVpc = \sqrt{200^2 + 2\cdot 200 \cdot 938}=\sqrt{415\,200}=644.36 \; MeVpc=2002+2⋅200⋅938=415200=644.36MeV
Answer: p = 644.36 MeV/c.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments