Question #179450

Calculate the momentum of a proton whose kinetic energy is 200 MeV.


1
Expert's answer
2021-04-09T11:25:32-0400

Given

E2p2c2=m2c4E^2 - p^2 c^2 =m^2 c^4 where E is full energy, p is momentum and m - mass,

and

E=T+E0=T+mc2E = T+E_0 = T+mc^2

we obtain

(T+mc2)2p2c2=m2c4(T+mc^2)^2 - p^2c^2 = m^2 c^4

T2+2Tmc2+m2c4p2c2=m2c4T^2 +2Tmc^2 + m^2c^4 -p^2c^2 =m^2c^4

p2c2=T2+2Tmc2p^2c^2 = T^2 +2Tmc^2

pc=T2+2Tmc2pc = \sqrt{T^2+2Tmc^2}

Let's calculate all in units of GeV, T=200  MeV,mc2=938  MeVT=200\; MeV , mc^2 =938 \; MeV.

pc=2002+2200938=415200=644.36  MeVpc = \sqrt{200^2 + 2\cdot 200 \cdot 938}=\sqrt{415\,200}=644.36 \; MeV


Answer: p = 644.36 MeV/c.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS