Question #175067

The kinetic energy of an electron is equal to its rest mass energy. Determine the

magnitude of its velocity and momentum.


1
Expert's answer
2021-03-24T19:39:13-0400

E0=m0c2=9.11031(3108)2=8191016 (J)512 (keV)E_0=m_0c^2=9.1\cdot10^{-31}\cdot(3\cdot10^{8})^2=819\cdot10^{-16}\ (J)\approx512\ (keV)


KE=m0c2(11v2c21)KE=m_0c^2\bigg(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1\bigg) , KE=E0KE=E_0


m0c2=m0c2(11v2c21)1=11v2c21m_0c^2=m_0c^2\bigg(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1\bigg)\to 1=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1



1v2c2=121v2c2=14v=32c\sqrt{1-\frac{v^2}{c^2}}=\frac{1}{2}\to1-\frac{v^2}{c^2}=\frac{1}{4}\to v=\frac{\sqrt3}{2}c . Answer


Total energy


E=m0c2/1v2c2=512/1(32c)2c2=1024 (keV)E=m_0c^2/\sqrt{1-\frac{v^2}{c^2}}=512/\sqrt{1-\frac{(\frac{\sqrt3}{2}c)^2}{c^2}}=1024\ (keV)


Momentum


E2=p2c2+(m0c2)2p=(E2(m0c2)2)/c2=E^2=p^2c^2+(m_0c^2)^2\to p=\sqrt{(E^2-(m_0c^2)^2)/c^2}=


=(10242(512)2)/c2=887 (keV/c)=\sqrt{(1024^2-(512)^2)/c^2}=887\ (keV/c) . Answer





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS