E 0 = m 0 c 2 = 9.1 ⋅ 1 0 − 31 ⋅ ( 3 ⋅ 1 0 8 ) 2 = 819 ⋅ 1 0 − 16 ( J ) ≈ 512 ( k e V ) E_0=m_0c^2=9.1\cdot10^{-31}\cdot(3\cdot10^{8})^2=819\cdot10^{-16}\ (J)\approx512\ (keV) E 0 = m 0 c 2 = 9.1 ⋅ 1 0 − 31 ⋅ ( 3 ⋅ 1 0 8 ) 2 = 819 ⋅ 1 0 − 16 ( J ) ≈ 512 ( k e V )
K E = m 0 c 2 ( 1 1 − v 2 c 2 − 1 ) KE=m_0c^2\bigg(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1\bigg) K E = m 0 c 2 ( 1 − c 2 v 2 1 − 1 ) , K E = E 0 KE=E_0 K E = E 0
m 0 c 2 = m 0 c 2 ( 1 1 − v 2 c 2 − 1 ) → 1 = 1 1 − v 2 c 2 − 1 m_0c^2=m_0c^2\bigg(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1\bigg)\to 1=\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1 m 0 c 2 = m 0 c 2 ( 1 − c 2 v 2 1 − 1 ) → 1 = 1 − c 2 v 2 1 − 1
1 − v 2 c 2 = 1 2 → 1 − v 2 c 2 = 1 4 → v = 3 2 c \sqrt{1-\frac{v^2}{c^2}}=\frac{1}{2}\to1-\frac{v^2}{c^2}=\frac{1}{4}\to v=\frac{\sqrt3}{2}c 1 − c 2 v 2 = 2 1 → 1 − c 2 v 2 = 4 1 → v = 2 3 c . Answer
Total energy
E = m 0 c 2 / 1 − v 2 c 2 = 512 / 1 − ( 3 2 c ) 2 c 2 = 1024 ( k e V ) E=m_0c^2/\sqrt{1-\frac{v^2}{c^2}}=512/\sqrt{1-\frac{(\frac{\sqrt3}{2}c)^2}{c^2}}=1024\ (keV) E = m 0 c 2 / 1 − c 2 v 2 = 512/ 1 − c 2 ( 2 3 c ) 2 = 1024 ( k e V )
Momentum
E 2 = p 2 c 2 + ( m 0 c 2 ) 2 → p = ( E 2 − ( m 0 c 2 ) 2 ) / c 2 = E^2=p^2c^2+(m_0c^2)^2\to p=\sqrt{(E^2-(m_0c^2)^2)/c^2}= E 2 = p 2 c 2 + ( m 0 c 2 ) 2 → p = ( E 2 − ( m 0 c 2 ) 2 ) / c 2 =
= ( 102 4 2 − ( 512 ) 2 ) / c 2 = 887 ( k e V / c ) =\sqrt{(1024^2-(512)^2)/c^2}=887\ (keV/c) = ( 102 4 2 − ( 512 ) 2 ) / c 2 = 887 ( k e V / c ) . Answer
Comments