Question #164244

A particle strikes a potential barrier of height U and width L. Derive an expression for 

the approximate transmission probability, if the energy of the particle E < U.


1
Expert's answer
2021-02-16T15:56:35-0500

Let's solve the (stationnary) Schrodinger equation in three consecutive domains : before the barrier, in the barries, after the barrier :

  1. 22mψ=Eψ,ψ=Aieikx+Areikx-\frac{\hbar^2}{2m} \psi'' = E \psi , \psi = A_i e^{ikx}+A_re^{-ikx} , k=2mE/k = \sqrt{2mE}/\hbar
  2. 22mψ=(UE)ψ,ψ=Bieχx+Breχx-\frac{\hbar^2}{2m} \psi'' = -(U-E)\psi, \psi = B_i e^{\chi x} + B_r e^{-\chi x} , χ=2m(UE)/\chi = \sqrt{2m(U-E)}/\hbar
  3. 22mψ=Eψ,ψ=Cieikx+Creikx-\frac{\hbar^2}{2m} \psi'' = E\psi, \psi = C_i e^{ikx} + C_r e^{-ikx}

Now by using the continuity of ψ\psi and ψ\psi', and taking Ai=1A_i=1 (as the particle is incident on the barrier) and Cr=0C_r=0 (as no particle comes from the other side) we get a set of equations :

{1+Ar=Bi+BrikArik=χBiχBrBieχa+Breχa=CieikaBiχeχaχBreχa=ikCieika\begin{cases} 1 + A_r = B_i + B_r \\ ik-A_r ik = \chi B_i - \chi B_r \\B_i e^{\chi a}+B_r e^{-\chi a} = C_i e^{ika} \\ B_i \chi e^{\chi a}-\chi B_r e^{-\chi a} = ikC_i e^{ika} \end{cases}

From the first pair of equations we get 2ik=(χ+ik)Bi(χik)Br2ik = (\chi +ik)B_i - (\chi-ik)B_r and thus Bi=2ik+(χik)Brχ+ikB_i = \frac{2ik+(\chi-ik)B_r}{\chi + ik}. We get a system :

{2ikχ+ikeχa+Br(eχa+χikχ+ikeχa)=Cieika2ikχχ+ikeχaχ(eχaχikχ+ikeχa)Br=ikCieika\begin{cases} \frac{2ik}{\chi+ik} e^{\chi a} + B_r(e^{-\chi a}+\frac{\chi - ik}{\chi+ik}e^{\chi a})=C_i e^{ika} \\ \frac{2ik \chi}{\chi+ik} e^{\chi a} - \chi(e^{-\chi a}-\frac{\chi - ik}{\chi+ik}e^{\chi a})B_r=ikC_i e^{ika} \end{cases}

From this we find χCieika(eχaχikχ+ikeχa)+ikCieika(eχa+χikχ+ikeχa)=22ikχχ+ik\chi C_i e^{ika}(e^{-\chi a}-\frac{\chi - ik}{\chi+ik}e^{\chi a})+ik C_i e^{ika}(e^{-\chi a}+\frac{\chi - ik}{\chi+ik}e^{\chi a}) = 2\frac{2ik\chi}{\chi+ik} and thus, finally

Ci=4ikχeika(χ+ik)(χeχa(χik)2χ+ikeχa+ikeχa)C_i = \frac{4ik\chi e^{-ika}}{(\chi+ik)(\chi e^{-\chi a}-\frac{(\chi-ik)^2}{\chi+ik}e^{\chi a}+ike^{-\chi a})} , Ci=4ikχeika(χ+ik)2eχa(χik)2eχa=2ikχeika(χ2k2)sinh(χa)+2ikχcosh(χa)C_i = \frac{4ik\chi e^{-ika}}{(\chi+ik)^2e^{-\chi a} - (\chi-ik)^2 e^{\chi a}}=\frac{2ik\chi e^{-ika}}{-(\chi^2-k^2)\sinh(\chi a)+2ik\chi \cosh(\chi a)} , Ci=eikacosh(χa)+iχ2k22kχsinh(χa)C_i = \frac{e^{-ika}}{\cosh(\chi a) +i\frac{\chi^2-k^2}{2k\chi}\sinh(\chi a)}

Thus T=Ci2=1cosh2(χa)+(χ2k2)24k2χ2sinh2(χa)=11+(χ2+k2)24k2χ2sinh2(χa)T = |C_i|^2 = \frac{1}{\cosh^2(\chi a)+\frac{(\chi^2-k^2)^2}{4k^2\chi^2}\sinh^2(\chi a)} = \frac{1}{1+\frac{(\chi^2+k^2)^2}{4k^2\chi^2}\sinh^2(\chi a)} , T=11+((UE)+E)24E(UE)sinh2(χa)=11+U24E(UE)sinh2(χa)T=\frac{1}{1+ \frac{((U-E)+E)^2}{4E(U-E)}\sinh^2(\chi a)} = \frac{1}{1+\frac{U^2}{4E(U-E)}\sinh^2(\chi a)}

When U2E(UE)sinh2(χa)1\frac{U^2}{E(U-E)}\sinh^2(\chi a)\gg 1 (wide, tall barrier) we get T16EU(1EU)e2χaT\sim 16\frac{E}{U}(1-\frac{E}{U})e^{-2\chi a}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS