Question #160005

Calculate de broglie wavelength and velocity of an electron carrying kinetic energy 2keV


1
Expert's answer
2021-01-30T16:47:44-0500

From the definition of the de Broglie wavelength, we have:


λ=hp=hmv.\lambda=\dfrac{h}{p}=\dfrac{h}{mv}.

Let's find the velocity of the electron from the definition of the kinetic energy:


KE=12mv2,KE=\dfrac{1}{2}mv^2,v=2KEm.v=\sqrt{\dfrac{2KE}{m}}.

Substituting vv into the first equation, we get:


λ=h2mKE,\lambda=\dfrac{h}{\sqrt{2mKE}},

λ=6.6261034 Js29.11031 kg2103 eV1.61019 JeV=2.741011 m.\lambda=\dfrac{6.626\cdot10^{-34}\ J\cdot s}{\sqrt{2\cdot9.1\cdot10^{-31}\ kg\cdot2\cdot10^3\ eV\cdot1.6\cdot10^{-19}\ \dfrac{J}{eV}}}=2.74\cdot10^{-11}\ m.

Finally, we can find the velocity of the electron:


v=22103 eV1.61019 JeV9.11031 kg=2.65107 ms.v=\sqrt{\dfrac{2\cdot2\cdot10^3\ eV\cdot1.6\cdot10^{-19}\ \dfrac{J}{eV}}{9.1\cdot10^{-31}\ kg}}=2.65\cdot10^7\ \dfrac{m}{s}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS