. Derive Schrodinger wave equation from Cartesian coordinates into Spherical polar coordinates. 1 π 2 π ππ (π 2 ππ ππ ) + 1 π 2π πππ π ππ (π πππ ππ ππ) + 1 π 2π ππ2π π 2π ππ2 + 2π β 2 (πΈ β π)π = 0
Let's first write (stationary) Schrodinger equation in cartesian coordinates :
"-\\frac{\\hbar^2}{2m} (\\frac{\\partial^2}{\\partial x^2}+\\frac{\\partial^2}{\\partial y^2}+\\frac{\\partial^2}{\\partial z^2})\\psi +V\\psi = E\\psi"
"-\\frac{\\hbar^2}{2m} \\Delta\\psi + (V-E)\\psi=0" , where "\\Delta" is Laplace operator
"\\Delta\\psi + \\frac{2m}{\\hbar^2} (E-V)\\psi=0"
Now it is just enough to use the expression of "\\Delta" in spherical coordinates :
"\\frac{1}{r^2} \\frac{\\partial}{\\partial r}(r^2\\frac{\\partial \\psi}{\\partial r}) + \\frac{1}{r^2 \\sin\\theta} \\frac{\\partial}{\\partial\\theta} (\\sin\\theta \\frac{\\partial\\psi}{\\partial\\theta}) + \\frac{1}{r^2\\sin^2\\theta} \\frac{\\partial^2\\psi}{\\partial\\phi^2}+\\frac{2m}{\\hbar^2}\\psi =0"
The expression of "\\Delta" in spherical coordinates can be found, for example, in Wikipedia : Laplace operator - Wikipedia . We can also, of course, calculate it directly :
"\\frac{\\partial}{\\partial x} = \\frac{\\partial r}{\\partial x}\\frac{\\partial}{\\partial r} + \\frac{\\partial \\theta}{\\partial x}\\frac{\\partial}{\\partial \\theta} + \\frac{\\partial \\phi}{\\partial x}\\frac{\\partial}{\\partial \\phi}" (chain rule)
"\\frac{\\partial}{\\partial x} = \\sin\\theta \\cos\\phi \\frac{\\partial}{\\partial r} -\\frac{\\cos\\theta \\cos\\phi}{r}\\frac{\\partial}{\\partial\\theta}-\\frac{\\sin\\phi}{r\\sin\\theta} \\frac{\\partial}{\\partial\\phi}" (using the expressions of spherical coordinates in cartesian coordinates)
The same calculation for "y, z" gives :
"\\frac{\\partial}{\\partial y} = \\sin\\theta \\sin\\phi \\frac{\\partial}{\\partial r} -\\frac{\\cos\\theta \\sin\\phi}{r}\\frac{\\partial}{\\partial\\theta} + \\frac{\\cos\\phi}{r\\sin\\theta} \\frac{\\partial}{\\partial\\phi}"
"\\frac{\\partial}{\\partial z} = \\cos\\theta \\frac{\\partial}{\\partial r} -\\frac{\\sin\\theta}{r}\\frac{\\partial}{\\partial\\theta}"
And now we find by direct calculation (as "\\frac{\\partial^2}{\\partial x^2} = (\\frac{\\partial}{\\partial x})^2" and same for other coordinates) :
"\\Delta = \\frac{1}{r^2} \\frac{\\partial}{\\partial r}(r^2\\frac{\\partial}{\\partial r}) + \\frac{1}{r^2 \\sin\\theta} \\frac{\\partial}{\\partial\\theta} (\\sin\\theta \\frac{\\partial}{\\partial\\theta}) + \\frac{1}{r^2\\sin^2\\theta} \\frac{\\partial^2}{\\partial\\phi^2}"
Comments
Leave a comment