2020-08-06T18:07:38-04:00
The following wave function |A> given as:
|A> = (9-2i) |u_1> + 4i |u_2> - |u_3 + i|u_4
(a) Find the dual vector <A|
(b) If |u_1> is under an orthonormal base, find the representation of |A> as a column vector in the basis given.
1
2020-08-10T19:55:01-0400
a)
A ∗ ⃗ = 1 A ( 9 + 2 i − 4 i − 1 − i ) A ∗ ⃗ = 1 103 ( 9 + 2 i − 4 i − 1 − i ) \vec{A^*}=\frac{1}{A} \begin{pmatrix}
9+2i & -4i & -1 & -i
\end{pmatrix}\\\vec{A^*}=\frac{1}{\sqrt {103}} \begin{pmatrix}
9+2i & -4i & -1 & -i
\end{pmatrix} A ∗ = A 1 ( 9 + 2 i − 4 i − 1 − i ) A ∗ = 103 1 ( 9 + 2 i − 4 i − 1 − i )
b)
A ⃗ = ( 9 − 2 i 4 i − 1 i ) \vec{A}= \begin{pmatrix}
9-2i \\ 4i \\ -1 \\ i
\end{pmatrix} A = ⎝ ⎛ 9 − 2 i 4 i − 1 i ⎠ ⎞
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments