Answer to Question #128034 in Quantum Mechanics for christopher seebaran

Question #128034
For a hydrogen atom wave functions are written as
1
Expert's answer
2020-08-02T15:07:15-0400

ψnm(r,θ,ϕ)=(2na0)3(n1)!2n(n+)!eρ/2ρLn12+1(ρ)Ym(θ,ϕ)where:ρ=2rna0,a0 is the reduced Bohr radius,a0=4πϵ02μe2,Ln12+1(ρ)is a generalized Laguerre polynomial of degree n1,andYm(θ,ϕ) is a spherical harmonic function of degree  and orderm.Note that the generalized Laguerre polynomials are defineddifferently by different authors.The usage here is consistent with the definitions used by Messiah, and Mathematica.In other places, the Laguerre polynomial includes a factor of (n+)!, or the generalized Laguerre polynomial appearing in the hydrogen wave function isLn+2+1(ρ)instead.{\displaystyle \psi _{n\ell m}(r,\theta ,\phi )={\sqrt {{\left({\frac {2}{na_{0}^{*}}}\right)}^{3}{\frac {(n-\ell -1)!}{2n(n+\ell )!}}}}e^{-\rho /2}\rho ^{\ell }L_{n-\ell -1}^{2\ell +1}(\rho )Y_{\ell }^{m}(\theta ,\phi )}\\ \text{where:}\\ {\rho ={2r \over {na_{0}^{*}}}},\\ {\displaystyle a_{0}^{*}}\text{ is the reduced Bohr radius},{ a_{0}^{*}={{4\pi \epsilon _{0}\hbar ^{2}} \over {\mu e^{2}}}},\\ {\displaystyle L_{n-\ell -1}^{2\ell +1}(\rho )} \text{is a generalized Laguerre polynomial of degree }{\displaystyle n-\ell -1}, \text{and}\\ {\displaystyle Y_{\ell }^{m}(\theta ,\phi )}\text{ is a spherical harmonic function of degree }{\displaystyle \ell }\text{ and order} \:m. \\\text{Note that the generalized Laguerre polynomials are defined} \\\text{differently by different authors.} \\\text{The usage here is consistent with the definitions used by Messiah, and Mathematica}.\\\text{In other places, the Laguerre polynomial includes a factor of }{\displaystyle (n+\ell )!},\\\text{ or the generalized Laguerre polynomial appearing in the hydrogen wave function is} \\{\displaystyle L_{n+\ell }^{2\ell +1}(\rho )} \text{instead.} For more information visit https://en.wikipedia.org/wiki/Hydrogen_atom

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment