Question #116397
6. What is the minimum work needed to push a 950 kg car 810 m up along a 9.0° incline?
a) Ignore friction
b) Assume the effective coefficient of friction retarding the car is 0.25
1
Expert's answer
2020-05-24T17:59:29-0400

We have given,

mass of the car m=950Kgm=950Kg ,inclined distance d=810md=810m and the angle of inclination θ=9.0\theta=9.0^{\circ} .

a).Let's draw the FBD of the system,


clearly from the above free body diagram (FBD), to lift up the car along the inclined plane,

minimum applied force must be,


Fapplied=mgsin(θ)F_{applied}=mg\sin(\theta)

Thus, work done by the FappliedF_{applied} will be,


Wapplied=FapplieddW_{applied}=F_{applied}\cdot d

Hence,

Wapplied=mgdsin(θ)    Wapplied=950×9.8×810×sin(9.0)    Wapplied=11,79,687.94JW_{applied}=mgd\sin(\theta)\\ \implies W_{applied}=950\times 9.8\times810\times \sin(9.0^{\circ})\\ \implies W_{applied}=11,79,687.94J

b).In this case frictional force is acting and coefficient of friction μ=0.25\mu=0.25 given.

Again draw the FBD of the system,


From the above FBD, we get that the minimum applied force need to be,


Fapplied=mgsin(θ)+fF_{applied}=mg\sin(\theta)+f

Since,

f=μNf=\mu N

where, NN is the normal force acting between incline plane and the given car,thus

N=mgcos(θ)    f=μmgcos(θ)N=mg\cos(\theta)\implies f=\mu mg\cos(\theta)

Therefore,

Fapplied=mg(sin(θ)+μcos(θ))    Wapplied=Fappliedd    Wapplied=mgd(sin(θ)+μcos(θ))    Wapplied=950×9.8×810×(sin(9.0)+0.25cos(9.0))    Wapplied=30,41,752.08JF_{applied}=mg(\sin(\theta)+\mu \cos(\theta))\\ \implies W_{applied}=F_{applied}\cdot d\\ \implies W_{applied}=mgd(\sin(\theta)+\mu \cos(\theta))\\ \implies W_{applied}=950\times9.8\times810\times(\sin(9.0^{\circ})+0.25\cos(9.0^{\circ}))\\ \implies W_{applied}=30,41,752.08J

Therefore we are done.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS