Question #116098
we construct a latter operator in the form of a = p − iα tanh(x), with α ∈ R, how do I get
a+a =
1
Expert's answer
2020-05-18T10:02:20-0400

a^=p^iαtanh(x^),a^+=p^+iαtanh(x^)\hat{a}=\hat{p}-i\alpha\tanh(\hat x),\,\,\hat{a}^+=\hat{p}+i\alpha\tanh(\hat x)

a^+a^=(p^+iαtanh(x^))(p^iαtanh(x^))=p^2iαp^tanh(x^)+iαtanh(x^)p^+α2tanh2(x^)=p^2+α2tanh2(x^)+iα(tanh(x^)p^p^tanh(x^))\hat a^+ \hat a=(\hat{p}+i\alpha\tanh(\hat x))(\hat{p}-i\alpha\tanh(\hat x))=\\ \hat{p}^2-i\alpha \hat p \tanh(\hat x)+i\alpha \tanh(\hat x)\hat{p}+\alpha^2\tanh^2(\hat x)=\\ \hat{p}^2+\alpha^2\tanh^2(\hat x)+i\alpha ( \tanh(\hat x)\hat p-\hat p \tanh(\hat x))


Let x^ψ(x)=xψ(x),p^ψ(x)=ixψ(x)\hat x \psi(x)=x\psi(x),\,\,\hat p \psi(x)=-i\hbar \partial_x \psi(x). Hence,

(tanh(x^)p^p^tanh(x^))ψ(x)=i(tanhxxψ(x)+x(tanhxψ(x))=i(tanhxxψ(x)+x(tanhx)ψ(x)+tanhxxψ(x))isech2xψ(x)( \tanh(\hat x)\hat p-\hat p \tanh(\hat x))\psi(x)=\\ i\hbar(-\tanh x \,\partial_x \psi(x)+\partial_x(\tanh x\, \psi(x))=\\ i\hbar(-\tanh x \,\partial_x \psi(x)+\partial_x(\tanh x)\, \psi(x)+\tanh x\,\partial_x\psi(x))\\ i\hbar \operatorname{sech}^2 x\, \psi(x)


Finally, a+a=p^2+α2tanh2(x^)αsech2(x^)a^+a=\hat{p}^2+\alpha^2\tanh^2(\hat x)-\alpha\hbar \operatorname{sech}^2 (\hat x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS