from crompton scatttering we get that :
K=hfΔλλ+ΔλK=hf\frac{\Delta\lambda}{\lambda+\Delta\lambda}K=hfλ+ΔλΔλ
K=hf2hmoc(λ+2hmoc)K=hf\dfrac{2h}{m_oc(\lambda+\frac{2h}{m_oc})}K=hfmoc(λ+moc2h)2h
K=2hfhfmoc(λf+2hfmoc)K=\dfrac{2hfhf}{m _oc(\lambda f+\frac{2hf}{m_oc})}K=moc(λf+moc2hf)2hfhf
K=2hfhfmoc2(1+2hfmoc2)K=\dfrac{2hfhf}{m _oc^2(1+\frac{2hf}{m_oc^2})}K=moc2(1+moc22hf)2hfhf
now lets substitute the vale of E and Eo
E=hf and Eo=moc2
K=2E2Eo(1+EEo)K=\dfrac{2E^2}{E_o(1+\frac{E}{E_o})}K=Eo(1+EoE)2E2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments