In order to evaluate commutator [x,eiap], we need to expand the exponent into Taylor series, i.e. eiap=1+iap+2!(iap)2+3!(iap)3+....
Since the commutator is linear in both arguments, we need to evaluate commutators like [x,pn]. Using Leibniz rule for commutators and canonical commutation relation [x,p]=iℏ:
[x,pn]=(iℏ)pn−1+p(iℏ)pn−2+...+pn−1(iℏ)=iℏnpn−1.
Hence,
[x,eiap]=[x,1+iap+2!(iap)2+3!(iap)3+...]=
=(iℏ)[(ia)1+2!(ia)2⋅2⋅p1+3!(ia)3⋅3⋅p2+...=(iℏ)(ia)∑n=0∞n!(iap)n=−aℏeiap.
Comments