Question #109169
Show that
[ x,e iap ] = -ae iap
h h
1
Expert's answer
2020-04-13T10:17:07-0400

In order to evaluate commutator [x,eiap][x, e^{i a p}], we need to expand the exponent into Taylor series, i.e. eiap=1+iap+(iap)22!+(iap)33!+...e^{i a p} = 1 + i a p + \frac{(i a p)^2}{2!} + \frac{(i a p)^3}{3!} + ....


Since the commutator is linear in both arguments, we need to evaluate commutators like [x,pn][x, p^n]. Using Leibniz rule for commutators and canonical commutation relation [x,p]=i[x, p] = i \hbar:


[x,pn]=(i)pn1+p(i)pn2+...+pn1(i)=inpn1[x, p^n] = (i \hbar) p^{n-1} + p (i \hbar) p^{n-2} + ... + p^{n-1} (i \hbar) = i \hbar n p^{n-1}.


Hence,

[x,eiap]=[x,1+iap+(iap)22!+(iap)33!+...]=[x, e^{i a p}] = [x, 1 + i a p + \frac{(i a p)^2}{2!} + \frac{(i a p)^3}{3!} + ...] =

=(i)[(ia)1+(ia)22!2p1+(ia)33!3p2+...=(i)(ia)n=0(iap)nn!=aeiap= (i \hbar)[(i a)^1 + \frac{(i a)^2}{2!} \cdot 2 \cdot p^1 + \frac{(i a)^3}{3!} \cdot 3 \cdot p^2 +... = (i \hbar) (i a) \sum_{n=0}^{\infty} \frac{(i a p)^n}{n!} = - a \hbar e^{i a p}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS