Question #99689
Given the relation e^iz = cosz + isnz and e^-iz = cosz - isinz. Show that
I. 1 + tan^2 z = sec^2 z
2. sin^2 z + cos^2 z = 1
1
Expert's answer
2019-12-02T10:06:44-0500

1) First, let us write tangent in terms of exponentials using sinx=eixeix2i\sin x = \frac{e^{ix} - e^{-i x}}{2 i}, cosx=eix+eix2\cos x = \frac{e^{i x} + e^{-i x}}{2}:

tanx=sinxcosx=eixeixi(eix+eix)\tan x = \frac{\sin x}{\cos x} = \frac{e^{i x} - e^{-i x}}{i(e^{i x} + e^{-i x})} .

Using last equation, obtain:1+tan2x=1(eixeix)2(eix+eix)2=(eixeix)2(eix+eix)2(eix+eix)2=2eix2eix4cos2x=1cos2x=sec2x1 + \tan^2 x = 1 - \frac{(e^{i x} - e^{-i x})^2}{(e^{i x} + e^{-i x})^2} = \frac{(e^{i x} - e^{-i x})^2-(e^{i x}+e^{-i x})^2}{(e^{i x} + e^{-i x})^2} = \frac{2 e^{i x} 2e^{-ix}}{4 \cos^2 x} = \frac{1}{\cos^2x} = \sec^2 x

(Here we used i2=1i^2 = -1, (ab)(a+b)=a2b2(a-b)(a+b) = a^2 - b^2 .


2) 1=eixeix=(cosx+isinx)(cosxisinx)=sin2x+cos2x1 = e^{ix} e^{-i x} = (\cos x + i \sin x)(\cos x - i \sin x) = \sin^2 x + \cos^2 x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS