We need to evaluate "\\oint_C \\bold F d \\bold s", where "\\bold F = (P(x,y), Q(x,y)) = (x^2 y, -x y^2)", and "C" is the contour of the circle of radius "2", centered at the origin.
According to Green's theorem, "\\oint_C \\bold F d \\bold s = \\iint_D (\\frac{\\partial Q}{\\partial x} - \\frac{\\partial P}{\\partial{y}})d A = \\iint (-y^2 - x^2) d A = -\\iint (x^2+y^2) dA" , where we need to take the surface integral inside the circle.
Let us use polar coordinates: "x = r \\cos \\theta, y = r \\sin \\theta, d A = r dr d\\theta" , "0\\leq r \\leq 2, 0 \\leq \\theta \\leq 2 \\pi". Hence, the integrand is "-\\int_0^{2\\pi} d \\theta \\int_0^2 r \\cdot r^2 dr = -2 \\pi \\frac{r^4}{4}|_0^2 = -8 \\pi".
Comments
Leave a comment