Question #91492
Vector A of magnitude 8 unit at 30°north of West and another vector B of magnitude 4unit at 60° south of East find the magnitude and direction of vector A+B?
1
Expert's answer
2019-07-08T10:34:01-0400





C=A+B{\vec C}={\vec A}+{\vec B}

Cx=Ax+Bx=8cos(30)+4cos(60)=243C_x=A_x+B_x=-8\cos(30^{\circ})+4\cos(60^{\circ})=2-4\sqrt{3}

Cy=Ay+By=8sin(30)4sin(60)=423C_y=A_y+B_y=8\sin(30^{\circ})-4\sin(60^{\circ})=4-2\sqrt{3}

The magnitude of A+B

C=Cx2+Cy2=(243)2+(423)2=4.96C=\sqrt{C_x^2+C_y^2}=\sqrt{(2-4\sqrt{3})^2+(4-2\sqrt{3})^2}=4.96

The direction of A+B

θ=tan1CyCx=tan14+23243\theta=\tan^{-1}\frac{-C_y}{C_x}=\tan^{-1}\frac{-4+2\sqrt{3}}{2-4\sqrt{3}}

=6.25North  of  West=6.25^{\circ}\quad \rm{North\;of\; West}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS