2019-07-07T09:19:24-04:00
Vector A of magnitude 8 unit at 30°north of West and another vector B of magnitude 4unit at 60° south of East find the magnitude and direction of vector A+B?
1
2019-07-08T10:34:01-0400
C ⃗ = A ⃗ + B ⃗ {\vec C}={\vec A}+{\vec B} C = A + B
C x = A x + B x = − 8 cos ( 3 0 ∘ ) + 4 cos ( 6 0 ∘ ) = 2 − 4 3 C_x=A_x+B_x=-8\cos(30^{\circ})+4\cos(60^{\circ})=2-4\sqrt{3} C x = A x + B x = − 8 cos ( 3 0 ∘ ) + 4 cos ( 6 0 ∘ ) = 2 − 4 3
C y = A y + B y = 8 sin ( 3 0 ∘ ) − 4 sin ( 6 0 ∘ ) = 4 − 2 3 C_y=A_y+B_y=8\sin(30^{\circ})-4\sin(60^{\circ})=4-2\sqrt{3} C y = A y + B y = 8 sin ( 3 0 ∘ ) − 4 sin ( 6 0 ∘ ) = 4 − 2 3 The magnitude of A+B
C = C x 2 + C y 2 = ( 2 − 4 3 ) 2 + ( 4 − 2 3 ) 2 = 4.96 C=\sqrt{C_x^2+C_y^2}=\sqrt{(2-4\sqrt{3})^2+(4-2\sqrt{3})^2}=4.96 C = C x 2 + C y 2 = ( 2 − 4 3 ) 2 + ( 4 − 2 3 ) 2 = 4.96 The direction of A+B
θ = tan − 1 − C y C x = tan − 1 − 4 + 2 3 2 − 4 3 \theta=\tan^{-1}\frac{-C_y}{C_x}=\tan^{-1}\frac{-4+2\sqrt{3}}{2-4\sqrt{3}} θ = tan − 1 C x − C y = tan − 1 2 − 4 3 − 4 + 2 3
= 6.2 5 ∘ N o r t h o f W e s t =6.25^{\circ}\quad \rm{North\;of\; West} = 6.2 5 ∘ North of West
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Learn more about our help with Assignments:
Physics
Comments