Answer to Question #88410 in Physics for Shivam Nishad

Question #88410
A continuous random variable X has the p.d.f.
f(x)={ kx³(1-x), 0≤x≤1
{ 0 , otherwise
Calculate the mean and standard deviation of X .
1
Expert's answer
2019-04-25T09:18:18-0400

The probability density function

"f(x)=\\left\\{\\begin{matrix}\n k x^3(1-x), & 0\\leq x\\leq1 \\\\\n 0 & \\rm{otherwise}\n\\end{matrix}\\right."

"1=\\int_{-\\infty}^{\\infty}f(x)dx=\\int_{0}^{1}k x^3(1-x)dx=\\frac{k}{20}"

So

"k=20"

"f(x)=\\left\\{\\begin{matrix}\n 20 x^3(1-x), & 0\\leq x\\leq 1 \\\\\n 0 & \\rm{otherwise}\n\\end{matrix}\\right."

The mean value

"\\mu=\\overline{x}=\\int_{-\\infty}^{\\infty}xf(x)dx=\\int_{0}^{1}20 x^4(1-x)dx=\\frac{2}{3}"

Since

"\\overline{x^2}=\\int_{-\\infty}^{\\infty}x^2f(x)dx=\\int_{0}^{1}20 x^5(1-x)dx=\\frac{10}{21}"

we obtain that standard deviation

"\\sigma=\\sqrt{\\overline{x^2}-(\\overline{x})^2}=\\sqrt{\\frac{10}{21}-\\left(\\frac{2}{3}\\right)^2}=\\frac{1}{3}\\sqrt{\\frac{2}{7}}=0.178"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS