The probability density function
"f(x)=\\left\\{\\begin{matrix}\n k x^3(1-x), & 0\\leq x\\leq1 \\\\\n 0 & \\rm{otherwise}\n\\end{matrix}\\right.""1=\\int_{-\\infty}^{\\infty}f(x)dx=\\int_{0}^{1}k x^3(1-x)dx=\\frac{k}{20}"
So
"k=20""f(x)=\\left\\{\\begin{matrix}\n 20 x^3(1-x), & 0\\leq x\\leq 1 \\\\\n 0 & \\rm{otherwise}\n\\end{matrix}\\right."
The mean value
"\\mu=\\overline{x}=\\int_{-\\infty}^{\\infty}xf(x)dx=\\int_{0}^{1}20 x^4(1-x)dx=\\frac{2}{3}"Since
"\\overline{x^2}=\\int_{-\\infty}^{\\infty}x^2f(x)dx=\\int_{0}^{1}20 x^5(1-x)dx=\\frac{10}{21}"we obtain that standard deviation
"\\sigma=\\sqrt{\\overline{x^2}-(\\overline{x})^2}=\\sqrt{\\frac{10}{21}-\\left(\\frac{2}{3}\\right)^2}=\\frac{1}{3}\\sqrt{\\frac{2}{7}}=0.178"
Comments
Leave a comment