Question #88410
A continuous random variable X has the p.d.f.
f(x)={ kx³(1-x), 0≤x≤1
{ 0 , otherwise
Calculate the mean and standard deviation of X .
1
Expert's answer
2019-04-25T09:18:18-0400

The probability density function

f(x)={kx3(1x),0x10otherwisef(x)=\left\{\begin{matrix} k x^3(1-x), & 0\leq x\leq1 \\ 0 & \rm{otherwise} \end{matrix}\right.

1=f(x)dx=01kx3(1x)dx=k201=\int_{-\infty}^{\infty}f(x)dx=\int_{0}^{1}k x^3(1-x)dx=\frac{k}{20}

So

k=20k=20

f(x)={20x3(1x),0x10otherwisef(x)=\left\{\begin{matrix} 20 x^3(1-x), & 0\leq x\leq 1 \\ 0 & \rm{otherwise} \end{matrix}\right.

The mean value

μ=x=xf(x)dx=0120x4(1x)dx=23\mu=\overline{x}=\int_{-\infty}^{\infty}xf(x)dx=\int_{0}^{1}20 x^4(1-x)dx=\frac{2}{3}

Since

x2=x2f(x)dx=0120x5(1x)dx=1021\overline{x^2}=\int_{-\infty}^{\infty}x^2f(x)dx=\int_{0}^{1}20 x^5(1-x)dx=\frac{10}{21}

we obtain that standard deviation

σ=x2(x)2=1021(23)2=1327=0.178\sigma=\sqrt{\overline{x^2}-(\overline{x})^2}=\sqrt{\frac{10}{21}-\left(\frac{2}{3}\right)^2}=\frac{1}{3}\sqrt{\frac{2}{7}}=0.178


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS