The probability density function
f(x)={kx3(1−x),00≤x≤1otherwise
1=∫−∞∞f(x)dx=∫01kx3(1−x)dx=20k So
k=20
f(x)={20x3(1−x),00≤x≤1otherwise The mean value
μ=x=∫−∞∞xf(x)dx=∫0120x4(1−x)dx=32Since
x2=∫−∞∞x2f(x)dx=∫0120x5(1−x)dx=2110 we obtain that standard deviation
σ=x2−(x)2=2110−(32)2=3172=0.178
Comments