We can find the electric field intensity between the plates from the formula:
"D = \\epsilon E = \\epsilon_0 \\epsilon_r E,"here,
"D"is the electric displacement field (in free space, the electric displacement field is equivalent to flux density ),
"\\epsilon"is the permittivity of the dielectric,
"\\epsilon_0"is the permittivity of the free space,
"\\epsilon_r"is the relative permittivity of the dielectric,
"E"is the electric field intensity.
Since, charge density equals flux density, we get:
"E = \\frac{D}{\\epsilon_0 \\epsilon_r}."Let's substitute the numbers:
"E = \\frac{5 \\cdot 10^{-4} \\frac{\\mu C}{cm^2} \\cdot \\frac{10^{-6} C}{1 \\mu C} \\cdot \\frac{(100 cm)^2}{1 m^2}}{8.854 \\cdot 10^{-12} \\frac{F}{m} \\cdot 3} = 188238 \\frac{V}{m}."We can find the voltage between the plates from the formula:
"V = Ed = 188238 \\frac{V}{m} \\cdot 0.15 \\cdot 10^{-3} m = 28.2 V."Answer:
"E = 188238 \\frac{V}{m}, V = 28.2 V".
Comments
Leave a comment