Question #346683

The velocity of a particle undergoing simple harmonic motion is described by,

𝑣(𝑑) = 2.25m/s cos(0.555 rad/sβˆ™ 𝑑 + 0.450 rad) What is the particle’s maximum acceleration? 


1
Expert's answer
2022-06-06T08:55:34-0400
𝑣(𝑑)=2.25β€…m/scos⁑((0.555β€…rad/s)𝑑+0.450β€…rad)𝑣(𝑑) = 2.25 {\:\rm m/s} \cos\left((0.555 {\:\rm rad/s}) 𝑑 + 0.450 {\:\rm rad}\right)

The acceleration

a(t)=𝑣′(𝑑)=2.25β€…m/sβˆ—(0.555β€…rad/s)βˆ—sin⁑((0.555β€…rad/s)𝑑+0.450β€…rad)a(t)=𝑣'(𝑑) = 2.25 {\:\rm m/s} *(0.555 {\:\rm rad/s}) \\ *\sin\left((0.555 {\:\rm rad/s}) 𝑑 + 0.450 {\:\rm rad}\right)

amax⁑=2.25β€…m/sβˆ—(0.555β€…rad/s)=1.25β€…m/s2a_{\max}= 2.25 {\:\rm m/s} *(0.555 {\:\rm rad/s})=1.25\:\rm m/s^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS