Question #333182

5.​ Obtain the value of P3 (x) using Rodrigues' formula​​​​​       

Pn(x) = 1/(2n)n! x dn/dxn *(x2-1)n

1
Expert's answer
2022-04-27T13:34:52-0400
P3(x)=1(23)3!d3dx3(x21)3P_3(x) = \frac{1}{(2^3)3!} \frac{d^3}{dx^3} (x^2-1)^3

=148d2dx2(6x(x21)2)= \frac{1}{48} \frac{d^2}{dx^2} (6x(x^2-1)^2)

=18ddx((x21)2+4x2(x21))= \frac{1}{8} \frac{d}{dx} ((x^2-1)^2+4x^2(x^2-1))

=18(4x(x21)+8x(x21)+8x3)= \frac{1}{8} (4x(x^2-1)+8x(x^2-1)+8x^3)

=12(5x33x)= \frac{1}{2}(5x^3-3x)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS