A 0.25-kg mass at the end of a spring oscillates 2.2 times per second with an amplitude of 0.15 m. Determine (a) the speed when it passes the equilibrium point, (b) the speed when it is 0.10 m from equilibrium, (c) the total energy of the system, and (d) the equation describing the motion of the mass, assuming that at t=0, x was a maximum.
The angular frequency of oscillation
"\\omega=2\\pi f\\\\\n=2*3.14*2.2=13.8\\:\\rm rad\/s"(a)
"v_{\\max}=\\omega A\\\\\n=13.8*0.15=2.1\\;\\rm m\/s"(b)
"v=\\sqrt{v_{\\max}^2-\\omega^2x^2}\\\\\n=\\sqrt{2.1^2-13.8^2*0.10^2}=1.6\\:\\rm m\/s"(c)
"E=\\frac{m\\omega^2A^2}{2}\\\\\n=\\frac{0.25*13.8^2*0.15^2}{2}=0.54\\:\\rm J"(d)
"x=0.15\\cos(13.8t)"
Comments
Leave a comment