The net electric field
E ⃗ = E ⃗ 1 + E ⃗ 2 \vec E=\vec E_1+\vec E_2 E = E 1 + E 2
E ⃗ = k q 1 r 1 3 r ⃗ 1 + k q 2 r 2 3 r ⃗ 2 \vec E=k\frac{q_1}{r_1^3}\vec r_1+k\frac{q_2}{r_2^3}\vec r_2 E = k r 1 3 q 1 r 1 + k r 2 3 q 2 r 2 r ⃗ 1 = ( 4 , − 3 ) , r 1 = 4 2 + ( − 3 ) 2 = 5 \vec r_1=(4,-3),\quad r_1=\sqrt{4^2+(-3)^2}=5 r 1 = ( 4 , − 3 ) , r 1 = 4 2 + ( − 3 ) 2 = 5
r ⃗ 2 = ( 4 , 0 ) , r 2 = 4 2 + 0 2 = 4 \vec r_2=(4,0),\quad r_2=\sqrt{4^2+0^2}=4 r 2 = ( 4 , 0 ) , r 2 = 4 2 + 0 2 = 4
E ⃗ = 9 × 1 0 9 × 3.0 × 1 0 − 9 5 3 ( 4 , − 3 ) + 9 × 1 0 9 × − 9.0 × 1 0 − 9 4 3 ( 4 , 0 ) = ( 0.864 , − 0.648 ) + ( − 5.063 , 0 ) = ( − 4.2 , − 0.65 ) N / C \vec E=9\times 10^9\times \frac{3.0\times 10^{-9}}{5^3}(4,-3)\\
+9\times 10^9\times \frac{-9.0\times 10^{-9}}{4^3}(4,0)\\
=(0.864,-0.648)+(-5.063,0)\\
=(-4.2,-0.65)\:\rm N/C E = 9 × 1 0 9 × 5 3 3.0 × 1 0 − 9 ( 4 , − 3 ) + 9 × 1 0 9 × 4 3 − 9.0 × 1 0 − 9 ( 4 , 0 ) = ( 0.864 , − 0.648 ) + ( − 5.063 , 0 ) = ( − 4.2 , − 0.65 ) N/C The magnitud of field
E = E x 2 + E y 2 = ( − 4.2 ) 2 + ( − 0.65 ) 2 = 4.25 N / C E=\sqrt{E_x^2+E_y^2}=\sqrt{(-4.2)^2+(-0.65)^2}\\
=4.25\:\rm N/C E = E x 2 + E y 2 = ( − 4.2 ) 2 + ( − 0.65 ) 2 = 4.25 N/C
Comments