Find how the lines can be described in unit vectors:
A B = B ⃗ − A ⃗ = ( 2 i ^ + 3 j ^ ) − ( i ^ + j ^ + k ^ ) = = i ^ + 2 j ^ − k ^ , C D = D ⃗ − C ⃗ = ( − j ^ + k ^ ) − ( 3 i ^ + 5 j ^ − 2 k ^ ) = = − 3 i ^ − 6 j ^ + 3 k ^ . AB=\vec B-\vec A=(2\hat i+3\hat j)-(\hat i+\hat j+\hat k)=\\=\hat i+2\hat j-\hat k,\\\space\\
CD=\vec D-\vec C=(-\hat j+\hat k)-(3\hat i+5\hat j-2\hat k)=\\=-3\hat i-6\hat j+3\hat k. A B = B − A = ( 2 i ^ + 3 j ^ ) − ( i ^ + j ^ + k ^ ) = = i ^ + 2 j ^ − k ^ , C D = D − C = ( − j ^ + k ^ ) − ( 3 i ^ + 5 j ^ − 2 k ^ ) = = − 3 i ^ − 6 j ^ + 3 k ^ .
Find the dot product:
A B ⋅ C D = ( i ^ + 2 j ^ − k ^ ) ⋅ ( − 3 i ^ − 6 j ^ + 3 k ^ ) = = − 3 − 12 − 3 = − 18. AB·CD=(\hat i+2\hat j-\hat k)·(-3\hat i-6\hat j+3\hat k)=\\
=-3-12-3=-18. A B ⋅ C D = ( i ^ + 2 j ^ − k ^ ) ⋅ ( − 3 i ^ − 6 j ^ + 3 k ^ ) = = − 3 − 12 − 3 = − 18.
Find the length of individual line:
∣ A B ∣ = 1 2 + 2 2 + ( − 1 ) 2 = 6 . ∣ C D ∣ = ( − 3 ) 2 + ( − 6 ) 2 + 3 2 = 5 4. ∣ C D ∣ ∣ A B ∣ = 3. |AB|=\sqrt{1^2+2^2+(-1)^2}=\sqrt 6.\\
|CD|=\sqrt{(-3)^2+(-6)^2+3^2}=\sqrt54.\\\space\\
\dfrac{|CD|}{|AB|}=3. ∣ A B ∣ = 1 2 + 2 2 + ( − 1 ) 2 = 6 . ∣ C D ∣ = ( − 3 ) 2 + ( − 6 ) 2 + 3 2 = 5 4. ∣ A B ∣ ∣ C D ∣ = 3. Since the dot product is
A B ⋅ C D = ∣ A B ∣ ⋅ ∣ C D ∣ cos θ , AB·CD=|AB|·|CD|\cos\theta, A B ⋅ C D = ∣ A B ∣ ⋅ ∣ C D ∣ cos θ , we can find the angle θ \theta θ between the lines to establish the configuration of the lines relative to each other:
θ = arccos A B ⋅ C D ∣ A B ∣ ⋅ ∣ C D ∣ = 180 ° . \theta=\arccos\dfrac{AB·CD}{|AB|·|CD|}=180°. θ = arccos ∣ A B ∣ ⋅ ∣ C D ∣ A B ⋅ C D = 180°.
As we see, the lines are parallel to each other.
Comments