Question #286394

A car travelling at 100.0 km/h sounds its horn as it approaches a hiker standing on the    highway. If the car’s horn has a frequency of 440 Hz and the temperature of the air is 0°C, what is the frequency of the sound waves reaching the hiker 

(a) as the car approaches? 

(b) after it has passed the hiker?




1
Expert's answer
2022-01-13T09:22:25-0500

Let's first find the speed of the sound in the air at 0°C temperature:


v=(331.3+0.606×T) ms,v=(331.3+0.606\times T)\ \dfrac{m}{s},v=(331.3+0.606×0) ms=331.3 ms.v=(331.3+0.606\times0^{\circ})\ \dfrac{m}{s}=331.3\ \dfrac{m}{s}.

Let's also convert km/h to m/s:


vs=100 kmh×1000 m1 km×1 h3600 s=27.78 ms.v_s=100\ \dfrac{km}{h}\times\dfrac{1000\ m}{1\ km}\times\dfrac{1\ h}{3600\ s}=27.78\ \dfrac{m}{s}.

(a) We can find the frequency observed by the hiker as the car approaches him from the Doppler Shift formula:


fo=fs(vvvs),f_o=f_s(\dfrac{v}{v-v_s}),fo=440 Hz×(331.3 ms331.3 ms27.78 ms)=480 Hz.f_o=440\ Hz\times(\dfrac{331.3\ \dfrac{m}{s}}{331.3\ \dfrac{m}{s}-27.78\ \dfrac{m}{s}})=480\ Hz.

(b) We can find the frequency observed by the hiker after the car has passed the hiker from the Doppler Shift formula:


fo=fs(vv+vs),f_o=f_s(\dfrac{v}{v+v_s}),fo=440 Hz×(331.3 ms331.3 ms+27.78 ms)=406 Hz.f_o=440\ Hz\times(\dfrac{331.3\ \dfrac{m}{s}}{331.3\ \dfrac{m}{s}+27.78\ \dfrac{m}{s}})=406\ Hz.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS