Let's first find the time that the projectile takes to reach the ground:
y = 1 2 g t 2 , y=\dfrac{1}{2}gt^2, y = 2 1 g t 2 , t = 2 y g = 2 × 80 m 9.8 m s = 4.04 s . t=\sqrt{\dfrac{2y}{g}}=\sqrt{\dfrac{2\times80\ m}{9.8\ \dfrac{m}{s}}}=4.04\ s. t = g 2 y = 9.8 s m 2 × 80 m = 4.04 s . The horizontal component of projectile's velocity remains the same during the flight. Let's find the vertical component of the projectile's velocity:
v x = v 0 x = 8 m s , v_x=v_{0x}=8\ \dfrac{m}{s}, v x = v 0 x = 8 s m , v y = − g t = − 9.8 m s 2 × 4.04 s = − 39.6 m s . v_y=-gt=-9.8\ \dfrac{m}{s^2}\times4.04\ s=-39.6\ \dfrac{m}{s}. v y = − g t = − 9.8 s 2 m × 4.04 s = − 39.6 s m . Finally, we can find the impact angle from the geometry:
θ = t a n − 1 ( v y v x ) , \theta=tan^{-1}(\dfrac{v_y}{v_x}), θ = t a n − 1 ( v x v y ) , θ = t a n − 1 ( − 39.6 m s 8 m s ) = 78. 6 ∘ b e l o w t h e h o r i z o n t a l . \theta=tan^{-1}(\dfrac{-39.6\ \dfrac{m}{s}}{8\ \dfrac{m}{s}})=78.6^{\circ}\ below\ the \ horizontal. θ = t a n − 1 ( 8 s m − 39.6 s m ) = 78. 6 ∘ b e l o w t h e h or i zo n t a l .
Comments