Question #284934

A projectile is fired horizontally at a speed of 8 m/s from an 80-m-high cliff. Find the angle of impact

1
Expert's answer
2022-01-05T08:16:24-0500

Let's first find the time that the projectile takes to reach the ground:


y=12gt2,y=\dfrac{1}{2}gt^2,t=2yg=2×80 m9.8 ms=4.04 s.t=\sqrt{\dfrac{2y}{g}}=\sqrt{\dfrac{2\times80\ m}{9.8\ \dfrac{m}{s}}}=4.04\ s.

The horizontal component of projectile's velocity remains the same during the flight. Let's find the vertical component of the projectile's velocity:


vx=v0x=8 ms,v_x=v_{0x}=8\ \dfrac{m}{s},vy=gt=9.8 ms2×4.04 s=39.6 ms.v_y=-gt=-9.8\ \dfrac{m}{s^2}\times4.04\ s=-39.6\ \dfrac{m}{s}.

Finally, we can find the impact angle from the geometry:


θ=tan1(vyvx),\theta=tan^{-1}(\dfrac{v_y}{v_x}),θ=tan1(39.6 ms8 ms)=78.6 below the horizontal.\theta=tan^{-1}(\dfrac{-39.6\ \dfrac{m}{s}}{8\ \dfrac{m}{s}})=78.6^{\circ}\ below\ the \ horizontal.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS