45. The Solar Maximum Mission Satellite was placed in a circular orbit about 150 mi above Earth. Determine (a) the orbital speed of the satellite and (b) the time required for one complete revolution.
(a)
"F_c=F_g,""\\dfrac{m_{sat}v^2}{R}=\\dfrac{Gm_{sat}M_E}{R^2},""v=\\sqrt{\\dfrac{GM_E}{R}}=\\sqrt{\\dfrac{GM_E}{R_E+h}},""v=\\sqrt{\\dfrac{6.67\\times10^{-11}\\ \\dfrac{N\\times m^2}{kg^2}\\times5.98\\times10^{24}\\ kg}{6.37\\times10^6\\ m+2.41\\times10^5\\ m}}=7767\\ \\dfrac{m}{s}."(b)
"\\dfrac{T^2}{R^3}=\\dfrac{4\\pi^2}{GM_E},""T=\\sqrt{\\dfrac{4\\pi^2R^3}{GM_E}},""T=\\sqrt{\\dfrac{4\\pi^2\\times(6.37\\times10^6\\ m+2.41\\times10^5\\ m)^3}{6.67\\times10^{-11}\\ \\dfrac{N\\times m^2}{kg^2}\\times5.98\\times10^{24}\\ kg}}=5348\\ s=1.48\\ h."
Comments
Leave a comment