Given:
m 1 = 50 k g m_1=50\:\rm kg m 1 = 50 kg
m 2 = 58 k g m_2=58\:\rm kg m 2 = 58 kg
m 3 = 6 k g m_3=6\:\rm kg m 3 = 6 kg
v 1 x = 0 m / s , v 1 y = 3 m / s v_{1x}=0\:{\rm m/s},\quad v_{1y}=3\:\rm m/s v 1 x = 0 m/s , v 1 y = 3 m/s
v 2 x = 3 m / s , v 2 y = 0 m / s v_{2x}=3\:{\rm m/s},\quad v_{2y}=0\:\rm m/s v 2 x = 3 m/s , v 2 y = 0 m/s
v 3 x = 0 m / s , v 3 y = − 3 m / s v_{3x}=0\:{\rm m/s},\quad v_{3y}=-3\:\rm m/s v 3 x = 0 m/s , v 3 y = − 3 m/s
The momentum of combined system
p x = m 1 v 1 x + m 2 v 2 x + m 3 v 3 x = 58 ∗ 3 = 174 k g ∗ m / s p_x=m_1v_{1x}+m_2v_{2x}+m_3v_{3x}\\
=58*3=174\:\rm kg*m/s p x = m 1 v 1 x + m 2 v 2 x + m 3 v 3 x = 58 ∗ 3 = 174 kg ∗ m/s
p y = m 1 v 1 y + m 2 v 2 y + m 3 v 3 y = 50 ∗ 3 + 6 ∗ ( − 3 ) = 132 k g ∗ m / s p_y=m_1v_{1y}+m_2v_{2y}+m_3v_{3y}\\
=50*3+6*(-3)=132\:\rm kg*m/s p y = m 1 v 1 y + m 2 v 2 y + m 3 v 3 y = 50 ∗ 3 + 6 ∗ ( − 3 ) = 132 kg ∗ m/s Magnitude of momentum
p = p x 2 + p y 2 = 17 4 2 + 13 2 2 = 218 k g ∗ m / s p=\sqrt{p_x^2+p_y^2}=\sqrt{174^2+132^2}=218\:\rm kg*m/s p = p x 2 + p y 2 = 17 4 2 + 13 2 2 = 218 kg ∗ m/s Direction of momentum
θ = tan − 1 p y p x = tan − 1 132 174 = 3 7 ∘ N o f E \theta=\tan^{-1}\frac{p_y}{p_x}=\tan^{-1}\frac{132}{174}=37^\circ\rm\quad N\:of\: E θ = tan − 1 p x p y = tan − 1 174 132 = 3 7 ∘ N of E
Comments