(a) Let's first find x x x - and y y y -components of initial velocity of the baseball:
v 0 x = v 0 c o s α 0 = 37 m s × c o s 53. 1 ∘ = 22.2 m s , v_{0x}=v_0cos\alpha_0=37\ \dfrac{m}{s}\times cos53.1^{\circ}=22.2\ \dfrac{m}{s}, v 0 x = v 0 cos α 0 = 37 s m × cos 53. 1 ∘ = 22.2 s m , v 0 y = v 0 s i n α 0 = 37 m s × s i n 53. 1 ∘ = 29.6 m s . v_{0y}=v_0sin\alpha_0=37\ \dfrac{m}{s}\times sin53.1^{\circ}=29.6\ \dfrac{m}{s}. v 0 y = v 0 s in α 0 = 37 s m × s in 53. 1 ∘ = 29.6 s m . Then, we can find the position of the baseball at t = 2 s t=2\ s t = 2 s :
x = x 0 + v 0 x t + 1 2 a t 2 = 0 + 22.2 m s × 2 s + 0 = 44.4 m , x=x_0+v_{0x}t+\dfrac{1}{2}at^2=0+22.2\ \dfrac{m}{s}\times2\ s+0=44.4\ m, x = x 0 + v 0 x t + 2 1 a t 2 = 0 + 22.2 s m × 2 s + 0 = 44.4 m , y = y 0 + v 0 y t + 1 2 g t 2 = 0 + 29.6 m s × 2 s + 1 2 × ( ) y=y_0+v_{0y}t+\dfrac{1}{2}gt^2=0+29.6\ \dfrac{m}{s}\times2\ s+\dfrac{1}{2}\times() y = y 0 + v 0 y t + 2 1 g t 2 = 0 + 29.6 s m × 2 s + 2 1 × ( ) y = 0 + 29.6 m s × 2 s + 1 2 × ( − 9.8 m s 2 ) × ( 2 s ) 2 = 39.6 m . y=0+29.6\ \dfrac{m}{s}\times2\ s+\dfrac{1}{2}\times(-9.8\ \dfrac{m}{s^2})\times(2\ s)^2=39.6\ m. y = 0 + 29.6 s m × 2 s + 2 1 × ( − 9.8 s 2 m ) × ( 2 s ) 2 = 39.6 m . Therefore, the position of the baseball at t = 2 s t=2\ s t = 2 s is (44.4 m, 39.6 m).
Let's find the magnitude and direction of the velocity of the baseball at t = 2 s t=2\ s t = 2 s .
The horizontal component of the velocity of baseball doesn't change during the flight:
v x f = 22.2 m s . v_{xf}=22.2\ \dfrac{m}{s}. v x f = 22.2 s m . Let's find the vertical component of baseball's velocity:
v y f = v 0 y + g t = 29.6 m s + ( − 9.8 m s 2 ) × 2 s = 10 m s . v_{yf}=v_{0y}+gt=29.6\ \dfrac{m}{s}+(-9.8\ \dfrac{m}{s^2})\times2\ s=10\ \dfrac{m}{s}. v y f = v 0 y + g t = 29.6 s m + ( − 9.8 s 2 m ) × 2 s = 10 s m . Finally, we can find the magnitude of the baseball's velocity at t = 2 s t=2\ s t = 2 s :
v f = v x f 2 + v y f 2 = ( 22.2 m s ) 2 + ( 10 m s ) 2 = 24.35 m s . v_f=\sqrt{v_{xf}^2+v_{yf}^2}=\sqrt{(22.2\ \dfrac{m}{s})^2+(10\ \dfrac{m}{s})^2}=24.35\ \dfrac{m}{s}. v f = v x f 2 + v y f 2 = ( 22.2 s m ) 2 + ( 10 s m ) 2 = 24.35 s m . We can find the direction of the baseball's velocity from the geometry:
α = t a n − 1 ( v y f v x f ) = t a n − 1 ( 10 m s 22.2 m s ) = 24. 3 ∘ . \alpha=tan^{-1}(\dfrac{v_{yf}}{v_{xf}})=tan^{-1}(\dfrac{10\ \dfrac{m}{s}}{22.2\ \dfrac{m}{s}})=24.3^{\circ}. α = t a n − 1 ( v x f v y f ) = t a n − 1 ( 22.2 s m 10 s m ) = 24. 3 ∘ . (b) We can find the time that the baseball takes to reach the highest point of its flight as follows:
v y f = v 0 y + g t , v_{yf}=v_{0y}+gt, v y f = v 0 y + g t , 0 = v 0 y + g t , 0=v_{0y}+gt, 0 = v 0 y + g t , t = − v 0 y g = − 29.6 m s − 9.8 m s 2 = 3.02 s . t=-\dfrac{v_{0y}}{g}=-\dfrac{29.6\ \dfrac{m}{s}}{-9.8\ \dfrac{m}{s^2}}=3.02\ s. t = − g v 0 y = − − 9.8 s 2 m 29.6 s m = 3.02 s . We can find the height of the baseball at this point as follows:
h = v 0 y t + 1 2 g t 2 , h=v_{0y}t+\dfrac{1}{2}gt^2, h = v 0 y t + 2 1 g t 2 , h = 29.6 m s × 3.02 s + 1 2 × ( − 9.8 m s 2 ) × ( 3.02 s ) 2 = 44.7 m . h=29.6\ \dfrac{m}{s}\times3.02\ s+\dfrac{1}{2}\times(-9.8\ \dfrac{m}{s^2})\times(3.02\ s)^2=44.7\ m. h = 29.6 s m × 3.02 s + 2 1 × ( − 9.8 s 2 m ) × ( 3.02 s ) 2 = 44.7 m . (c) We can find the horizontal range of the baseball as follows:
R = v 0 x t f l i g h t = v 0 x 2 t = 22.2 m s × 2 × 3.02 s = 134 m . R=v_{0x}t_{flight}=v_{0x}2t=22.2\ \dfrac{m}{s}\times2\times3.02\ s=134\ m. R = v 0 x t f l i g h t = v 0 x 2 t = 22.2 s m × 2 × 3.02 s = 134 m .
Comments