(a) Let's first find "x"- and "y"-components of initial velocity of the baseball:
"v_{0x}=v_0cos\\alpha_0=37\\ \\dfrac{m}{s}\\times cos53.1^{\\circ}=22.2\\ \\dfrac{m}{s},""v_{0y}=v_0sin\\alpha_0=37\\ \\dfrac{m}{s}\\times sin53.1^{\\circ}=29.6\\ \\dfrac{m}{s}."Then, we can find the position of the baseball at "t=2\\ s":
"x=x_0+v_{0x}t+\\dfrac{1}{2}at^2=0+22.2\\ \\dfrac{m}{s}\\times2\\ s+0=44.4\\ m,""y=y_0+v_{0y}t+\\dfrac{1}{2}gt^2=0+29.6\\ \\dfrac{m}{s}\\times2\\ s+\\dfrac{1}{2}\\times()""y=0+29.6\\ \\dfrac{m}{s}\\times2\\ s+\\dfrac{1}{2}\\times(-9.8\\ \\dfrac{m}{s^2})\\times(2\\ s)^2=39.6\\ m."Therefore, the position of the baseball at "t=2\\ s" is (44.4 m, 39.6 m).
Let's find the magnitude and direction of the velocity of the baseball at "t=2\\ s".
The horizontal component of the velocity of baseball doesn't change during the flight:
"v_{xf}=22.2\\ \\dfrac{m}{s}."Let's find the vertical component of baseball's velocity:
"v_{yf}=v_{0y}+gt=29.6\\ \\dfrac{m}{s}+(-9.8\\ \\dfrac{m}{s^2})\\times2\\ s=10\\ \\dfrac{m}{s}."Finally, we can find the magnitude of the baseball's velocity at "t=2\\ s":
"v_f=\\sqrt{v_{xf}^2+v_{yf}^2}=\\sqrt{(22.2\\ \\dfrac{m}{s})^2+(10\\ \\dfrac{m}{s})^2}=24.35\\ \\dfrac{m}{s}."We can find the direction of the baseball's velocity from the geometry:
"\\alpha=tan^{-1}(\\dfrac{v_{yf}}{v_{xf}})=tan^{-1}(\\dfrac{10\\ \\dfrac{m}{s}}{22.2\\ \\dfrac{m}{s}})=24.3^{\\circ}."(b) We can find the time that the baseball takes to reach the highest point of its flight as follows:
"v_{yf}=v_{0y}+gt,""0=v_{0y}+gt,""t=-\\dfrac{v_{0y}}{g}=-\\dfrac{29.6\\ \\dfrac{m}{s}}{-9.8\\ \\dfrac{m}{s^2}}=3.02\\ s."We can find the height of the baseball at this point as follows:
"h=v_{0y}t+\\dfrac{1}{2}gt^2,""h=29.6\\ \\dfrac{m}{s}\\times3.02\\ s+\\dfrac{1}{2}\\times(-9.8\\ \\dfrac{m}{s^2})\\times(3.02\\ s)^2=44.7\\ m."(c) We can find the horizontal range of the baseball as follows:
"R=v_{0x}t_{flight}=v_{0x}2t=22.2\\ \\dfrac{m}{s}\\times2\\times3.02\\ s=134\\ m."
Comments
Leave a comment