Question #281082

Problem 1. A batter hits a baseball so that it leaves the bat at speed vo = 37.0m/s at an angle αo = 53.1, at a location where g = 9.80m/s2.


1
Expert's answer
2021-12-20T10:32:15-0500

(a) Let's first find xx- and yy-components of initial velocity of the baseball:


v0x=v0cosα0=37 ms×cos53.1=22.2 ms,v_{0x}=v_0cos\alpha_0=37\ \dfrac{m}{s}\times cos53.1^{\circ}=22.2\ \dfrac{m}{s},v0y=v0sinα0=37 ms×sin53.1=29.6 ms.v_{0y}=v_0sin\alpha_0=37\ \dfrac{m}{s}\times sin53.1^{\circ}=29.6\ \dfrac{m}{s}.

Then, we can find the position of the baseball at t=2 st=2\ s:


x=x0+v0xt+12at2=0+22.2 ms×2 s+0=44.4 m,x=x_0+v_{0x}t+\dfrac{1}{2}at^2=0+22.2\ \dfrac{m}{s}\times2\ s+0=44.4\ m,y=y0+v0yt+12gt2=0+29.6 ms×2 s+12×()y=y_0+v_{0y}t+\dfrac{1}{2}gt^2=0+29.6\ \dfrac{m}{s}\times2\ s+\dfrac{1}{2}\times()y=0+29.6 ms×2 s+12×(9.8 ms2)×(2 s)2=39.6 m.y=0+29.6\ \dfrac{m}{s}\times2\ s+\dfrac{1}{2}\times(-9.8\ \dfrac{m}{s^2})\times(2\ s)^2=39.6\ m.

Therefore, the position of the baseball at t=2 st=2\ s is (44.4 m, 39.6 m).

Let's find the magnitude and direction of the velocity of the baseball at t=2 st=2\ s.

The horizontal component of the velocity of baseball doesn't change during the flight:


vxf=22.2 ms.v_{xf}=22.2\ \dfrac{m}{s}.

Let's find the vertical component of baseball's velocity:


vyf=v0y+gt=29.6 ms+(9.8 ms2)×2 s=10 ms.v_{yf}=v_{0y}+gt=29.6\ \dfrac{m}{s}+(-9.8\ \dfrac{m}{s^2})\times2\ s=10\ \dfrac{m}{s}.

Finally, we can find the magnitude of the baseball's velocity at t=2 st=2\ s:


vf=vxf2+vyf2=(22.2 ms)2+(10 ms)2=24.35 ms.v_f=\sqrt{v_{xf}^2+v_{yf}^2}=\sqrt{(22.2\ \dfrac{m}{s})^2+(10\ \dfrac{m}{s})^2}=24.35\ \dfrac{m}{s}.

We can find the direction of the baseball's velocity from the geometry:


α=tan1(vyfvxf)=tan1(10 ms22.2 ms)=24.3.\alpha=tan^{-1}(\dfrac{v_{yf}}{v_{xf}})=tan^{-1}(\dfrac{10\ \dfrac{m}{s}}{22.2\ \dfrac{m}{s}})=24.3^{\circ}.

(b) We can find the time that the baseball takes to reach the highest point of its flight as follows:


vyf=v0y+gt,v_{yf}=v_{0y}+gt,0=v0y+gt,0=v_{0y}+gt,t=v0yg=29.6 ms9.8 ms2=3.02 s.t=-\dfrac{v_{0y}}{g}=-\dfrac{29.6\ \dfrac{m}{s}}{-9.8\ \dfrac{m}{s^2}}=3.02\ s.

We can find the height of the baseball at this point as follows:


h=v0yt+12gt2,h=v_{0y}t+\dfrac{1}{2}gt^2,h=29.6 ms×3.02 s+12×(9.8 ms2)×(3.02 s)2=44.7 m.h=29.6\ \dfrac{m}{s}\times3.02\ s+\dfrac{1}{2}\times(-9.8\ \dfrac{m}{s^2})\times(3.02\ s)^2=44.7\ m.

(c) We can find the horizontal range of the baseball as follows:


R=v0xtflight=v0x2t=22.2 ms×2×3.02 s=134 m.R=v_{0x}t_{flight}=v_{0x}2t=22.2\ \dfrac{m}{s}\times2\times3.02\ s=134\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS