The uniform bar of length l 40 N and is subjected to four forces shown find the magnitude location and direction of a fith force F needed to keep the bar in equilibrium
Fx=80⋅cos30°=69.282 (N)F_x=80\cdot\cos30°=69.282\ (N)Fx=80⋅cos30°=69.282 (N)
Fy=60+70+40−50−80⋅sin30°=80 (N)F_y=60+70+40-50-80\cdot\sin30°=80\ (N)Fy=60+70+40−50−80⋅sin30°=80 (N)
F=69.2822+802=105.83 (N)F=\sqrt{69.282^2+80^2}=105.83\ (N)F=69.2822+802=105.83 (N)
∑τa=0→70⋅0.2L+40⋅0.5L+60⋅L−50⋅0.8L−\sum\tau_a=0\to70\cdot0.2L+40\cdot0.5L+60\cdot L-50\cdot0.8L-∑τa=0→70⋅0.2L+40⋅0.5L+60⋅L−50⋅0.8L−
−80⋅xL=0→x=0.675-80\cdot xL=0\to x=0.675−80⋅xL=0→x=0.675
α=tan−1(80/69.282)=49.1°\alpha=\tan^{-1}(80/69.282)=49.1°α=tan−1(80/69.282)=49.1°
Answer:
F=105.83 (N)F=105.83\ (N)F=105.83 (N)
α=49.1°\alpha=49.1°α=49.1°
x=0.675Lx=0.675Lx=0.675L
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments