Let the first mass be m 1 = m m_1=m m 1 = m . Then, the second one will be m 2 = 4.5 − m m_2=4.5-m m 2 = 4.5 − m . Let’s write the Law of Universal Gravitation:
F = G m 1 m 2 d 2 , F=\dfrac{Gm_1m_2}{d^2}, F = d 2 G m 1 m 2 , 2.0 × 1 0 − 10 = 6.67 × 1 0 − 11 × ( 4.5 m − m 2 ) ( 0.22 m ) 2 , 2.0\times10^{-10}=\dfrac{6.67\times10^{-11}\times(4.5m-m^2)}{(0.22\ m)^2}, 2.0 × 1 0 − 10 = ( 0.22 m ) 2 6.67 × 1 0 − 11 × ( 4.5 m − m 2 ) , ( 0.22 m ) 2 × 2.0 × 1 0 − 10 6.67 × 1 0 − 11 = 4.5 m − m 2 , \dfrac{(0.22\ m)^2\times2.0\times10^{-10}}{6.67\times10^{-11}}=4.5m-m^2, 6.67 × 1 0 − 11 ( 0.22 m ) 2 × 2.0 × 1 0 − 10 = 4.5 m − m 2 , m 2 − 4.5 m + 0.145 = 0. m^2-4.5m+0.145=0. m 2 − 4.5 m + 0.145 = 0. This quadratic equation has two roots. So, solving the equation we can find the masses of the objects:
m 1 = − b + b 2 − 4 a c 2 a = − ( − 4.5 ) + ( − 4.5 ) 2 − 4 × 1 × 0.145 2 × 1 , m_1=\dfrac{-b+\sqrt{b^2-4ac}}{2a}=\dfrac{-(-4.5)+\sqrt{(-4.5)^2-4\times1\times0.145}}{2\times1}, m 1 = 2 a − b + b 2 − 4 a c = 2 × 1 − ( − 4.5 ) + ( − 4.5 ) 2 − 4 × 1 × 0.145 , m 1 = 4.47 k g , m_1=4.47\ kg, m 1 = 4.47 k g , m 2 = − b − b 2 − 4 a c 2 a = − ( − 4.5 ) − ( − 4.5 ) 2 − 4 × 1 × 0.145 2 × 1 , m_2=\dfrac{-b-\sqrt{b^2-4ac}}{2a}=\dfrac{-(-4.5)-\sqrt{(-4.5)^2-4\times1\times0.145}}{2\times1}, m 2 = 2 a − b − b 2 − 4 a c = 2 × 1 − ( − 4.5 ) − ( − 4.5 ) 2 − 4 × 1 × 0.145 , m 2 = 0.032 k g . m_2=0.032\ kg. m 2 = 0.032 k g . Answer:
m l a r g e r = 4.47 k g , m s m a l l e r = 0.032 k g . m_{larger}=4.47\ kg, m_{smaller}=0.032\ kg. m l a r g er = 4.47 k g , m s ma ll er = 0.032 k g .
Comments