Answer to Question #278079 in Physics for Llll

Question #278079

A flywheel initially rotating at 600 rpm is bought to a stop by a constant torque in 15 a. How many revolutions does the flywheel make before coming to stop





1
Expert's answer
2021-12-10T11:30:17-0500

Let's first convert rev/min to rad/s:


ωi=600 revmin×1 min60 s×2π rad1 rev=62.8 rads.\omega_i=600\ \dfrac{rev}{min}\times\dfrac{1\ min}{60\ s}\times\dfrac{2\pi\ rad}{1\ rev}=62.8\ \dfrac{rad}{s}.


Then, we can find the angular deceleration of the flywheel:


α=ωfωit=062.8 rads15 s=4.19 rads2.\alpha=\dfrac{\omega_f-\omega_i}{t}=\dfrac{0-62.8\ \dfrac{rad}{s}}{15\ s}=-4.19\ \dfrac{rad}{s^2}.

Let's find the angular displacement of the flywheel:


ωf2=ωi2+2αθ,\omega_f^2=\omega_i^2+2\alpha \theta,0=ωi2+2αθ,0=\omega_i^2+2\alpha \theta,θ=ωi22α=(62.8 rads)22×(4.19 rads2)=471 rad.\theta=-\dfrac{\omega_i^2}{2\alpha}=-\dfrac{(62.8\ \dfrac{rad}{s})^2}{2\times(-4.19\ \dfrac{rad}{s^2})}=471\ rad.

Finally, we can find how many revolutions does the flywheel make before coming to stop:


n=θ2π radrev=471 rad2π radrev=75 rev.n=\dfrac{\theta}{2\pi\ \dfrac{rad}{rev}}=\dfrac{471\ rad}{2\pi\ \dfrac{rad}{rev}}=75\ rev.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment