Question #277653

A planet orbiting a distant star has a radius 3.24 Γ— 106 π‘š. The escape speed for an object launched from this planet’s surface is 7.65 Γ— 103 π‘š/𝑠. What is the acceleration due to gravity at the surface of the planet?


1
Expert's answer
2021-12-20T17:57:21-0500

Let's first find the mass of the planet:


v=2GMR,v=\sqrt{\dfrac{2GM}{R}},v2=2GMR,v^2=\dfrac{2GM}{R},M=v2R2G,M=\dfrac{v^2R}{2G},M=(7.65Γ—103 ms)2Γ—3.24Γ—106 m2Γ—6.67Γ—10βˆ’11 NΓ—m2kg2=1.42Γ—1024 kg.M=\dfrac{(7.65\times10^3\ \dfrac{m}{s})^2\times3.24\times10^6\ m}{2\times6.67\times10^{-11}\ \dfrac{N\times m^2}{kg^2}}=1.42\times10^{24}\ kg.

Finally, we can find the acceleration due to gravity at the surface of the planet:


g=GMR2,g=\dfrac{GM}{R^2},g=6.67Γ—10βˆ’11 NΓ—m2kg2Γ—1.42Γ—1024 kg(3.24Γ—106 m)2=9.02 ms2.g=\dfrac{6.67\times10^{-11}\ \dfrac{N\times m^2}{kg^2}\times1.42\times10^{24}\ kg}{(3.24\times10^6\ m)^2}=9.02\ \dfrac{m}{s^2}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS