Calculate the centripetal acceleration of the earth in its orbit around the sun and the net force exerted on the earth. What exerts this force on the earth? Assume the earth’s orbit is a circle of radius 1.49 × 1011 m.
The centripetal acceleration of the Earth
an=v2/r=ω2r2/r=ω2r=(2πT)2r=(2⋅3.1431557600)2⋅1.49⋅1011=a_n=v^2/r=\omega^2r^2/r=\omega^2r=(\frac{2\pi}{T})^2r=(\frac{2\cdot3.14}{31557600})^2\cdot 1.49\cdot10^{11}=an=v2/r=ω2r2/r=ω2r=(T2π)2r=(315576002⋅3.14)2⋅1.49⋅1011=
=0.0059 (m/s2)=0.0059\ (m/s^2)=0.0059 (m/s2)
The net force exerted on the earth
F=GMmr2=6.67⋅10−11⋅1.988⋅1030⋅5.97⋅1024(1.49⋅1011)2=35.66⋅1021 (N)F=G\frac{Mm}{r^2}=6.67\cdot10^{-11}\cdot\frac{1.988\cdot10^{30}\cdot5.97\cdot10^{24}}{(1.49\cdot10^{11})^2}=35.66\cdot10^{21}\ (N)F=Gr2Mm=6.67⋅10−11⋅(1.49⋅1011)21.988⋅1030⋅5.97⋅1024=35.66⋅1021 (N)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments