A sinusoidal wave is described by π¦ = (0.48 π) sin(0.555π₯ β 36.0π‘) π, where x and y are in meters
and t is in seconds. Determine for this wave the (a) amplitude, (b) angular frequency, (c) angular wave
number, (d) wavelength, (e) wave speed, and (f) direction of motion.
(a) "A=0.48\\ m."
(b) "\\omega=36\\ \\dfrac{rad}{s}."
(c) "k=0.555\\ m^{-1}."
(d)
"k=\\dfrac{2\\pi}{\\lambda},""\\lambda=\\dfrac{2\\pi}{k}=\\dfrac{2\\pi}{0.555\\ m^{-1}}=11.32\\ m."(e)
"\\omega=2\\pi f,""f=\\dfrac{\\omega}{2\\pi}=\\dfrac{36\\ \\dfrac{rad}{s}}{2\\pi}=5.73\\ Hz,""v=f\\lambda=5.73\\ Hz\\times11.32\\ m=64.8\\ \\dfrac{m}{s}."(f) The wave moving in negative "x"-direction.
Comments
Leave a comment