Question #275877

A beam of x-ray photon with a wavelength of 0.750 nm strikes a free electron in a sample. The recoiling electron moves away at 1.60 x 106 m/s. a) Determine the Compton shift in the photon’s wavelength. b) Compute the angle through which the photon is scattered.


1
Expert's answer
2021-12-06T09:47:56-0500

(a)


The kinetic energy of the recoil electron is equal to


T=EEE=ET=hcλ0mv2/2=6.62610343108/(0.75109)=T=E-E'\to E'=E-T=\frac{hc}{\lambda_0}-mv^2/2=6.626\cdot10^{-34}\cdot3\cdot10^{8}/(0.75\cdot10^{-9})=


=6.62610343108/(0.75109)9.11031(1.6106)2/2==6.626\cdot10^{-34}\cdot3\cdot10^{8}/(0.75\cdot10^{-9})-9.1\cdot10^{-31}\cdot (1.6\cdot10^6)^2/2=


=2.641016 (J)=2.64\cdot10^{-16}\ (J)


E=hc/λλ=hc/E=6.62610343108/(2.641016)=0.753 (nm)E'=hc/\lambda'\to \lambda'=hc/E'=6.626\cdot10^{-34}\cdot3\cdot10^{8}/(2.64\cdot10^{-16})=0.753\ (nm)


Δλ=λλ0=0.7530.750=0.003 (nm)\Delta \lambda=\lambda'-\lambda_0=0.753-0.750=0.003\ (nm) . Answer


(b)


Δλ=λC(1cosθ)cosθ=1ΔλλC=\Delta \lambda=\lambda_C(1-\cos\theta)\to\cos\theta=1-\frac{\Delta\lambda}{\lambda_C}=


=10.0031092.42631012=0.2364θ104°=1-\frac{0.003\cdot10^{-9}}{2.4263·10^{−12}}=-0.2364\to \theta\approx104° . Answer






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS