Question #273153

 A 50-gram block rests on an inclined plane 15o with the horizontal. The coefficient of friction is 0.10. Find:  a) the acceleration of the block, b) the work done against friction 2 minutes after starting from rest, and c) its average power.

 


1
Expert's answer
2021-11-29T15:13:57-0500

a) Let's apply the Newton's Second Law of Motion:


mgsinθμmgcosθ=ma,mgsin\theta-\mu mgcos\theta=ma,a=g(sinθμcosθ),a=g(sin\theta-\mu cos\theta),a=9.8 ms2×(sin150.1×cos15)=1.59 ms2.a=9.8\ \dfrac{m}{s^2}\times(sin15^{\circ}-0.1\times cos15^{\circ})=1.59\ \dfrac{m}{s^2}.

b) Let's first find the final velocity of the block 2 minutes after starting from rest:


v=v0+at=0+1.59 ms2×120 s=190.8 ms.v=v_0+at=0+1.59\ \dfrac{m}{s^2}\times120\ s=190.8\ \dfrac{m}{s}.

Then, we can find the distance traveled by the block during this time:


d=12(v0+v)t,d=\dfrac{1}{2}(v_0+v)t,d=12×(0+190.8 ms)×120 s=11448 m.d=\dfrac{1}{2}\times(0+190.8\ \dfrac{m}{s})\times120\ s=11448\ m.

Finally, we can find the work done against friction 2 minutes after starting from rest:


Wfr=Ffrd=μmgdcosθ,W_{fr}=F_{fr}d=\mu mgdcos\theta,Wfr=0.1×0.05 kg×9.8 ms2×11448 m×cos15=542 J.W_{fr}=0.1\times0.05\ kg\times9.8\ \dfrac{m}{s^2}\times11448\ m\times cos15^{\circ}=542\ J.

c) By the definition of the power, we get:


P=Wt=542 J120 s=4.52 W.P=\dfrac{W}{t}=\dfrac{542\ J}{120\ s}=4.52\ W.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS