Answer to Question #273153 in Physics for may

Question #273153

 A 50-gram block rests on an inclined plane 15o with the horizontal. The coefficient of friction is 0.10. Find:  a) the acceleration of the block, b) the work done against friction 2 minutes after starting from rest, and c) its average power.

 


1
Expert's answer
2021-11-29T15:13:57-0500

a) Let's apply the Newton's Second Law of Motion:


"mgsin\\theta-\\mu mgcos\\theta=ma,""a=g(sin\\theta-\\mu cos\\theta),""a=9.8\\ \\dfrac{m}{s^2}\\times(sin15^{\\circ}-0.1\\times cos15^{\\circ})=1.59\\ \\dfrac{m}{s^2}."

b) Let's first find the final velocity of the block 2 minutes after starting from rest:


"v=v_0+at=0+1.59\\ \\dfrac{m}{s^2}\\times120\\ s=190.8\\ \\dfrac{m}{s}."

Then, we can find the distance traveled by the block during this time:


"d=\\dfrac{1}{2}(v_0+v)t,""d=\\dfrac{1}{2}\\times(0+190.8\\ \\dfrac{m}{s})\\times120\\ s=11448\\ m."

Finally, we can find the work done against friction 2 minutes after starting from rest:


"W_{fr}=F_{fr}d=\\mu mgdcos\\theta,""W_{fr}=0.1\\times0.05\\ kg\\times9.8\\ \\dfrac{m}{s^2}\\times11448\\ m\\times cos15^{\\circ}=542\\ J."

c) By the definition of the power, we get:


"P=\\dfrac{W}{t}=\\dfrac{542\\ J}{120\\ s}=4.52\\ W."

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog