If a simple harmonic oscillator has velocity function of:
v = 100πAsin(100πt – 0.75π) Find:
i) an expression for displacement, x.
ii) an expression for acceleration, a.
Given:
"v =100\u03c0A\\sin(100\u03c0t \u2013 0.75\u03c0)"
(i) the displacement is related with velocity by formula
"x=\\int vdt\\\\=100\u03c0A\\int\\sin(100\u03c0t \u2013 0.75\u03c0)\\\\=-A\\cos(100\u03c0t \u2013 0.75\u03c0)"(ii) the acceleration
"a=\\frac{dv}{dt}\\\\\n=(100\u03c0A\\sin(100\u03c0t \u2013 0.75\u03c0) )'\\\\\n=100^2\\pi^2A\\cos(100\u03c0t \u2013 0.75\u03c0)"
Comments
Leave a comment