Question #271199

Suppose a proton and an electron were held together in a hydrogen atom by gravitational forces only. Find the formula for the energy levels of such an atom, the radius of its ground-state Bohr orbit, and its ionization energy in eV.

1
Expert's answer
2021-12-02T10:07:11-0500

mvr=nh2πv=nh/(2πmr)mvr=\frac{nh}{2\pi}\to v=nh/(2\pi mr)


mv2r=GMmr2v2=GM/rm\frac{v^2}{r}=G\frac{Mm}{r^2}\to v^2=GM/r


So, we heve


n2h24π2m2r2=GMrrn=n2h24π2m2GM\frac{n^2h^2}{4\pi^2m^2r^2}=\frac{GM}{r}\to r_n=\frac{n^2h^2}{4\pi^2m^2GM} (mm - is the mass of the electron, MM - is the mass of the proton).


The radius of the electron ground-state Bohr orbit


r1=h24π2m2GM=(6.621034)243.142(9.11031)26.6710111.671027=1.21029 (m)r_1=\frac{h^2}{4\pi^2m^2GM}=\frac{(6.62\cdot10^{-34})^2}{4\cdot3.14^2\cdot (9.1\cdot10^{-31})^2\cdot6.67\cdot10^{-11}\cdot 1.67\cdot10^{-27}}=1.2\cdot10^{29}\ (m)


After performing similar calculations we get


En=2π2G2M2m3h2n2=23.142(6.671011)2(1.671027)2(1.61031)3(6.621034)212=4.21097 (J)=E_n=-\frac{2\pi^2G^2M^2m^3}{h^2n^2}=-\frac{2\cdot3.14^2\cdot(6.67\cdot10^{-11})^2\cdot(1.67\cdot10^{-27})^2\cdot(1.6\cdot10^{-31})^3}{(6.62\cdot10^{-34})^2\cdot1^2}=-4.2\cdot10^{-97}\ (J)=


=2.61078 (eV)=-2.6\cdot10^{-78}\ (eV)


Ei=EmaxEmin=0(2.61078)=2.61078 (eV)E_i=E_{max}-E_{min}=0-(-2.6\cdot10^{-78})=2.6\cdot10^{-78}\ (eV)










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS