mvr=2πnh→v=nh/(2πmr)
mrv2=Gr2Mm→v2=GM/r
So, we heve
4π2m2r2n2h2=rGM→rn=4π2m2GMn2h2 (m - is the mass of the electron, M - is the mass of the proton).
The radius of the electron ground-state Bohr orbit
r1=4π2m2GMh2=4⋅3.142⋅(9.1⋅10−31)2⋅6.67⋅10−11⋅1.67⋅10−27(6.62⋅10−34)2=1.2⋅1029 (m)
After performing similar calculations we get
En=−h2n22π2G2M2m3=−(6.62⋅10−34)2⋅122⋅3.142⋅(6.67⋅10−11)2⋅(1.67⋅10−27)2⋅(1.6⋅10−31)3=−4.2⋅10−97 (J)=
=−2.6⋅10−78 (eV)
Ei=Emax−Emin=0−(−2.6⋅10−78)=2.6⋅10−78 (eV)
Comments