Suppose a proton and an electron were held together in a hydrogen atom by gravitational forces only. Find the formula for the energy levels of such an atom, the radius of its ground-state Bohr orbit, and its ionization energy in eV.
"mvr=\\frac{nh}{2\\pi}\\to v=nh\/(2\\pi mr)"
"m\\frac{v^2}{r}=G\\frac{Mm}{r^2}\\to v^2=GM\/r"
So, we heve
"\\frac{n^2h^2}{4\\pi^2m^2r^2}=\\frac{GM}{r}\\to r_n=\\frac{n^2h^2}{4\\pi^2m^2GM}" ("m" - is the mass of the electron, "M" - is the mass of the proton).
The radius of the electron ground-state Bohr orbit
"r_1=\\frac{h^2}{4\\pi^2m^2GM}=\\frac{(6.62\\cdot10^{-34})^2}{4\\cdot3.14^2\\cdot (9.1\\cdot10^{-31})^2\\cdot6.67\\cdot10^{-11}\\cdot 1.67\\cdot10^{-27}}=1.2\\cdot10^{29}\\ (m)"
After performing similar calculations we get
"E_n=-\\frac{2\\pi^2G^2M^2m^3}{h^2n^2}=-\\frac{2\\cdot3.14^2\\cdot(6.67\\cdot10^{-11})^2\\cdot(1.67\\cdot10^{-27})^2\\cdot(1.6\\cdot10^{-31})^3}{(6.62\\cdot10^{-34})^2\\cdot1^2}=-4.2\\cdot10^{-97}\\ (J)="
"=-2.6\\cdot10^{-78}\\ (eV)"
"E_i=E_{max}-E_{min}=0-(-2.6\\cdot10^{-78})=2.6\\cdot10^{-78}\\ (eV)"
Comments
Leave a comment