Question #270860

The fan of a CPU starts decelerating at a constant rate from an angular speed of 897 rpm. The fan has undergone 1856 revolutions before it comes to rest. How long (in s) did it take the CPU fan to stop rotating?


1
Expert's answer
2021-11-25T10:14:36-0500

Let's first convert rev/min to rad/s:


ωi=897 revmin×1 min60 s×2π rad1 rev=94 rads.\omega_i=897\ \dfrac{rev}{min}\times\dfrac{1\ min}{60\ s}\times\dfrac{2\pi\ rad}{1\ rev}=94\ \dfrac{rad}{s}.

Then, we can find the angular displacement of the CPU fan:


θ=2π radrevn=2π radrev×1856 rev=11662 rad.\theta=2\pi\ \dfrac{rad}{rev} n=2\pi\ \dfrac{rad}{rev}\times1856\ rev=11662\ rad.

Let's find the angular deceleration of the CPU fan from the kinematic equation:


ωf2=ωi2+2αθ,\omega_f^2=\omega_i^2+2\alpha \theta,0=ωi2+2αθ,0=\omega_i^2+2\alpha \theta,α=ωi22θ=(94 rads)22×11662 rad=0.38 rads2.\alpha=-\dfrac{\omega_i^2}{2\theta}=-\dfrac{(94\ \dfrac{rad}{s})^2}{2\times11662\ rad}=-0.38\ \dfrac{rad}{s^2}.

Finally, we can find the time that the CPU fan takes to stop rotating:


t=ωfωiα=094 rads0.38 rads2=247 s.t=\dfrac{\omega_f-\omega_i}{\alpha}=\dfrac{0-94\ \dfrac{rad}{s}}{-0.38\ \dfrac{rad}{s^2}}=247\ s.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS