A damped oscillator makes 100 oscillations per second. The energy decays to 1/e of
its initial value in 10 ms. How many oscillations per second will the oscillator make
in the absence of damping.
"\\nu=\\frac{\\sqrt{\\omega_0^2-\\beta^2}}{2\\pi}\\to 4\\pi ^2\\nu^2=\\omega_0^2-\\beta^2\\to4\\pi ^2\\nu^2+\\beta^2=\\omega_0^2"
"\\omega_0=\\sqrt{4\\pi ^2\\nu^2+\\beta^2}"
"\\nu_0=\\frac{\\omega_0}{2\\pi}=\\frac{\\sqrt{4\\pi ^2\\nu^2+\\beta^2}}{2\\pi}"
"E_2\/E_1=A_2^2\/A_1^2\\to (E_1\/e)\/E_1=A_2^2\/A_1^2\\to 1\/e=A_2^2\/A_1^2"
"e=A_1^2\/A_2^2=(A_0e^{-\\beta t_0}\/A_0e^{-\\beta t})^2=(1\/e^{-\\beta t})^2" ; "t_0=0"
"e=e^{2\\beta t}\\to \\beta=1\/(2t)=1\/(2\\cdot0.01)=50\\ (s^{-1})"
"\\nu_0=\\frac{\\sqrt{4\\pi ^2\\nu^2+\\beta^2}}{2\\pi}=\\frac{\\sqrt{4\\cdot3.14^2\\cdot 100^2+50^2}}{2\\cdot3.14}=100.32\\ (Hz)"
Comments
Leave a comment