Question #268517

Two fire trucks are moving toward each other at a rate of 25 m/s. If the first


fire truck emits a frequency of 10000Hz and the ambient temperature is 400C,


what will be the observed frequency of the second fire truck?

1
Expert's answer
2021-11-21T17:25:24-0500

Let's first find the speed of sound at air temperature of 40 C40\ ^{\circ}C:


v=γRTM,v=\sqrt{\dfrac{\gamma RT}{M}},v=1.48.314 JmolK313.15 K0.02896 kgmol=355 ms.v=\sqrt{\dfrac{1.4\cdot8.314\ \dfrac{J}{mol\cdot K}\cdot313.15\ K}{0.02896\ \dfrac{kg}{mol}}}=355\ \dfrac{m}{s}.

Finally, we can find the frequency of the sound detected by the second fire truck from the Doppler Shift formula:


fo=fs(v+vovvs),f_o=f_s(\dfrac{v+v_o}{v-v_s}),fo=10000 Hz(355 ms+25 ms355 ms25 ms)=11515 Hz.f_o=10000\ Hz\cdot(\dfrac{355\ \dfrac{m}{s}+25\ \dfrac{m}{s}}{355\ \dfrac{m}{s}-25\ \dfrac{m}{s}})=11515\ Hz.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS