Gold has a face centered cubic unit cell and has the density 𝟏𝟗. 𝟑 𝒈 𝒄𝒎−𝟑 . Calculate the length along an edge. (𝐴𝑢 = 197 𝑔 𝑚𝑜𝑙 −1 )
For FCC crystal structure n=18⋅8+12⋅6=4n=\frac{1}{8}\cdot8+\frac{1}{2}\cdot6=4n=81⋅8+21⋅6=4 atoms per unit cell and V=a3V=a^3V=a3 .
ρ=n⋅MV⋅NA=n⋅Ma3⋅NA→a=(n⋅Mρ⋅NA)1/3=\rho=\frac{n\cdot M}{V\cdot N_A}=\frac{n\cdot M}{a^3\cdot N_A}\to a=(\frac{n\cdot M}{\rho\cdot N_A})^{1/3}=ρ=V⋅NAn⋅M=a3⋅NAn⋅M→a=(ρ⋅NAn⋅M)1/3=
=(4⋅0.19719300⋅6.023⋅1023)1/3=4.077⋅10−10 (m)=(\frac{4\cdot 0.197}{19300\cdot 6.023\cdot10^{23}})^{1/3}=4.077\cdot10^{-10}\ (m)=(19300⋅6.023⋅10234⋅0.197)1/3=4.077⋅10−10 (m) . Answer
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments