Question #267118

Point charges 88μC,-55μC and 70 μC are placed in a straight line. The central one is 0.75m from each of the others. Calculate the net force on each due to the other two.

1
Expert's answer
2021-11-16T13:40:45-0500

q1=88 μCq_1=88\ \mu C , q2=55 μCq_2=-55\ \mu C , q3=70 μCq_3=70\ \mu C , r=0.75 (m)r=0.75\ (m)



F1=kq1q2r2kq1q3(2r)2=kq1r2(q2q34)=F_1=k\frac{q_1q_2}{r^2}-k\frac{q_1q_3}{(2r)^2}=\frac{kq_1}{r^2}(q_2-\frac{q_3}{4})=


=9109881060.752(55106701064)=52.8 (N)=\frac{9\cdot10^9\cdot 88\cdot10^{-6}}{0.75^2}(55\cdot10^{-6}-\frac{70\cdot10^{-6}}{4})=52.8\ (N)



F2=kq2q1r2+kq2q3r2=kq2r2(q1+q3)=F_2=-k\frac{q_2q_1}{r^2}+k\frac{q_2q_3}{r^2}=\frac{kq_2}{r^2}(-q_1+q_3)=


=9109551060.752(88106+70106)=15.84 (N)=\frac{9\cdot10^9\cdot 55\cdot10^{-6}}{0.75^2}(-88\cdot10^{-6}+70\cdot10^{-6})=-15.84\ (N)



F3=kq3q2r2+kq3q1(2r)2=kq3r2(q2+q14)=F_3=-k\frac{q_3q_2}{r^2}+k\frac{q_3q_1}{(2r)^2}=\frac{kq_3}{r^2}(-q_2+\frac{q_1}{4})=


=9109701060.752(55106+881064)=36.96 (N)=\frac{9\cdot10^9\cdot 70\cdot10^{-6}}{0.75^2}(-55\cdot10^{-6}+\frac{88\cdot10^{-6}}{4})=-36.96\ (N)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS