Question #266753

7. Find the specific gravity, weight density, and volume of the unknown object if it



weighs 40 Ib in air and 30 Ib in water.



2. A 10,000 kg vehicle will round the having a radius of 150 meter. The curved road is



banked at 25 degrees with the horizontal, find the minimum coefficient of friction.



4. Find the acceleration and the centripetal force of a 14 kN car that rounds the curved



of radius of 50 meters having a speed of 8 km/h.



5. Two perfectly elastic balls, weighing 27 N and 18 N, approach each other with a



speed of 6 m/s and 11 m/s, respectively. What is the speed of the balls after the



collision?




1
Expert's answer
2021-11-16T13:50:11-0500

7. 40 lb=178 N40\ lb=178\ N ; 30 lb=133 N30\ lb=133\ N


Specific gravity SG=ρobject/ρwater=178/133=1.34SG=\rho_{object}/\rho_{water}=178/133=1.34


Density ρ=1.341000=1340 (kg/m3)\rho=1.34\cdot1000=1340\ (kg/m^3)


V=178/(13409.8)=0.014 (m3)V=178/(1340\cdot9.8)=0.014\ (m^3)



2. Suppose that v=5 (m/s)v=5\ (m/s) . So, we have


μ=v2cos25°+gRsin25°v2sin25°+gRcos25°=52cos25°+9.8150sin25°52sin25°+9.8150cos25°=0.45\mu=\frac{-v^2\cos25°+gR\sin25°}{v^2\sin25°+gR\cos25°}=\frac{-5^2\cdot\cos25°+9.8\cdot 150\cdot\sin25°}{5^2\cdot\sin25°+9.8\cdot150\cdot \cos25°}=0.45



4. a=v2/r=2.222/500.1 (m/s2)a=v^2/r=2.22^2/50\approx0.1\ (m/s^2) and F=ma=(14000/9.8)0.1=141 (N)F=ma=(14000/9.8)\cdot0.1=141\ (N)


5. v1=m1m2m1+m2u1+2m2m1+m2u2=2.81.82.8+1.86+21.82.8+1.811=v_1=\frac{m_1-m_2}{m_1+m_2}u_1+\frac{2m_2}{m_1+m_2}u_2=\frac{2.8-1.8}{2.8+1.8}\cdot 6+\frac{2\cdot 1.8}{2.8+1.8}\cdot 11=


=9.91 (m/s)=9.91\ (m/s)

v2=2m1m1+m2u1+m2m1m1+m2u2=22.82.8+1.86+1.82.82.8+1.811=v_2=\frac{2m_1}{m_1+m_2}u_1+\frac{m_2-m_1}{m_1+m_2}u_2=\frac{2\cdot 2.8}{2.8+1.8}\cdot 6+\frac{1.8-2.8}{2.8+1.8}\cdot 11=


=4.91 (m/s)=4.91\ (m/s)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS