i) number of revolutions the wheel turns before it stops.
ii) angular acceleration of the wheel
i. N=l/(2πr)=25/(2⋅3.14⋅0.3)≈13.3N=l/(2\pi r)=25/(2\cdot3.14\cdot0.3)\approx13.3N=l/(2πr)=25/(2⋅3.14⋅0.3)≈13.3
ii. ω2=ω02+2ϵθ\omega^2=\omega_0^2+2\epsilon\thetaω2=ω02+2ϵθ
θ=2πN=l/r\theta=2\pi N=l/rθ=2πN=l/r
ω=0\omega=0ω=0 . So, we have ϵ=ω02/(2θ)=ω02⋅r/(2l)=(4π)2⋅0.3/(2⋅25)=0.95 (rad/s2)\epsilon=\omega_0^2/(2\theta)=\omega_0^2\cdot r/(2l)=(4\pi)^2\cdot 0.3/(2\cdot25)=0.95\ (rad/s^2)ϵ=ω02/(2θ)=ω02⋅r/(2l)=(4π)2⋅0.3/(2⋅25)=0.95 (rad/s2)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments