Question #265985

Find the sum of the vector using the component method. Please show the solution.



(vec) A = 5m, 25°


(vec) B = 11m, 125°


(vec) C = 25m, 35°



Note:


(vec) R = (vec) A + (vec) B + (vec) C

1
Expert's answer
2021-11-16T10:01:13-0500

Find the components:


Ax=5cos25°=4.5 m,Ay=5sin25°=2.11 m.Bx=11cos125°=6.31 m,By=11sin125°=9.01 m.Cx=25cos35°=20.4 m,Cy=25sin35°=14.3 m. Rx=Ax+Bx+Cx=18.6 m,Ry=Ay+By+Cy=25.4 m. R=Rx2+Ry2=27.9 m. θ=arctanRyRx=53.8°.A_x=5\cos25°=4.5\text{ m},\\ A_y=5\sin25°=2.11\text{ m}.\\ B_x=11\cos125°=-6.31\text{ m},\\ B_y=11\sin125°=9.01\text{ m}.\\ C_x=25\cos35°=20.4\text{ m},\\ C_y=25\sin35°=14.3\text{ m}.\\\space\\ R_x=A_x+B_x+C_x=18.6\text{ m},\\ R_y=A_y+B_y+C_y=25.4\text{ m}.\\\space\\ R=\sqrt{R_x^2+R_y^2}=27.9\text{ m}.\\\space\\ \theta=\arctan\frac{R_y}{R_x}=53.8°.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS