Let's first find the x x x - and y y y - components of the resultant displacement:
d x = 45 k m × c o s 3 0 ∘ + 98 k m × c o s ( 18 0 ∘ − 5 0 ∘ ) = − 24 k m , d_x=45\ km\times cos30^{\circ}+98\ km\times cos(180^{\circ}-50^{\circ})=-24\ km, d x = 45 km × cos 3 0 ∘ + 98 km × cos ( 18 0 ∘ − 5 0 ∘ ) = − 24 km , d y = 45 k m × s i n 3 0 ∘ + 98 k m × s i n ( 18 0 ∘ − 5 0 ∘ ) = 97.6 k m . d_y=45\ km\times sin30^{\circ}+98\ km\times sin(180^{\circ}-50^{\circ})=97.6\ km. d y = 45 km × s in 3 0 ∘ + 98 km × s in ( 18 0 ∘ − 5 0 ∘ ) = 97.6 km . We can find the magnitude of the resultant displacement from the Pythagorean theorem:
d = d x 2 + d y 2 = ( − 24 k m ) 2 + ( 97.6 k m ) 2 = 100.5 k m . d=\sqrt{d_x^2+d_y^2}=\sqrt{(-24\ km)^2+(97.6\ km)^2}=100.5\ km. d = d x 2 + d y 2 = ( − 24 km ) 2 + ( 97.6 km ) 2 = 100.5 km . We can find the direction of the resultant displacement from the geometry:
θ = t a n − 1 ( d y d x ) , \theta=tan^{-1}(\dfrac{d_y}{d_x}), θ = t a n − 1 ( d x d y ) , θ = t a n − 1 ( 97.6 k m − 24 k m ) = 76. 2 ∘ N o f W . \theta=tan^{-1}(\dfrac{97.6\ km}{-24\ km})=76.2^{\circ} N\ of\ W. θ = t a n − 1 ( − 24 km 97.6 km ) = 76. 2 ∘ N o f W .
Comments