Question #263872
  1. A box is along a frictionless horizontal floor and a force of 250 N pushes the box with an angle of 40o with the horizontal. Starting from rest, the box achieves a velocity of 8 m/s in a time of 4 seconds. What is the weight of the box and the force exerted by the floor on the box?
1
Expert's answer
2021-11-11T12:02:02-0500

Let's first find the acceleration of the box:


a=vv0t=8 ms04 s=2 ms2.a=\dfrac{v-v_0}{t}=\dfrac{8\ \dfrac{m}{s}-0}{4\ s}=2\ \dfrac{m}{s^2}.

Applying the Newton's Second Law of Motion, we get:


Fpushcosθ=ma,F_{push}cos\theta=ma,m=Fpushcosθa=250 N×cos402 ms2=95.75 kg.m=\dfrac{F_{push}cos\theta}{a}=\dfrac{250\ N\times cos40^{\circ}}{2\ \dfrac{m}{s^2}}=95.75\ kg.

Then, we can find the weight of the box:


W=mg=95.75 kg×9.8 ms2=938 N.W=mg=95.75\ kg\times 9.8\ \dfrac{m}{s^2}=938\ N.

Finally, we can find the force exerted by the floor on the box:


N=mgFpushsinθ=938 N250 N×sin40=777 N.N=mg-F_{push}sin\theta=938\ N-250\ N\times sin40^{\circ}=777\ N.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS