Let's first find the acceleration of the box:
"a=\\dfrac{v-v_0}{t}=\\dfrac{8\\ \\dfrac{m}{s}-0}{4\\ s}=2\\ \\dfrac{m}{s^2}."Applying the Newton's Second Law of Motion, we get:
"F_{push}cos\\theta=ma,""m=\\dfrac{F_{push}cos\\theta}{a}=\\dfrac{250\\ N\\times cos40^{\\circ}}{2\\ \\dfrac{m}{s^2}}=95.75\\ kg."Then, we can find the weight of the box:
"W=mg=95.75\\ kg\\times 9.8\\ \\dfrac{m}{s^2}=938\\ N."Finally, we can find the force exerted by the floor on the box:
"N=mg-F_{push}sin\\theta=938\\ N-250\\ N\\times sin40^{\\circ}=777\\ N."
Comments
Leave a comment