8.0 kg stone at the end of a steel wire (Y = 2.0×1011) is being whirled in a horizontal circle
at a constant tangential speed of 12 m/s. The wire is 4.0 m long and has a radius of 1.0 × 10-3m.
Determine the strain in the wire.
F=mv2r=8⋅1224=288 (N)F=m\frac{v^2}{r}=8\cdot\frac{12^2}{4}=288\ (N)F=mrv2=8⋅4122=288 (N)
A=πr2=3.14⋅(1⋅10−3)2=3.14⋅10−6 (m2)A=\pi r^2=3.14\cdot(1\cdot10^{-3})^2=3.14\cdot10^{-6}\ (m^2)A=πr2=3.14⋅(1⋅10−3)2=3.14⋅10−6 (m2)
E=FlA⋅Δl→Δl=FlAE=288⋅43.14⋅10−6⋅2⋅1011=E=\frac{Fl}{A\cdot\Delta l}\to\Delta l=\frac{Fl}{AE}=\frac{288\cdot4}{3.14\cdot10^{-6}\cdot2\cdot10^{11}}=E=A⋅ΔlFl→Δl=AEFl=3.14⋅10−6⋅2⋅1011288⋅4=
=0.0018 (m)=1.8 (mm)=0.0018\ (m)=1.8\ (mm)=0.0018 (m)=1.8 (mm)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments